1 |
KRIEGER C, DIEDERICH F, SCHWEITZER D, et al. Molecular structure and spectroscopic properties of kekulene[J]. Angewandte Chemie International Edition in English, 1979, 18(9): 699⁃701.
|
2 |
GUILLAUME P, YASUTOMO S, TAISHI N, et al. Synthesis of a carbon nanobelt[J]. Science, 2017, 356(6334): 172⁃175.
|
3 |
LU C, JIANG F L, WANG J A. CNB with controllable external electric field deformation: A theoretical study of the structure⁃function relationship[J]. Materials Research Express, 2022, 9(6): 064001.
|
4 |
LU C, CHEN P P, LI C L, et al. Study of intermolecular interaction between small molecules and carbon nanobelt: Electrostatic, exchange, dispersive and inductive forces[J]. Catalysts, 2022, 12(5): 561.
|
5 |
张敬畅, 刘慷, 曹维良. 纳米粒子的特性、应用及制备方法[J]. 石油化工高等学校学报, 2001, 14(2): 21⁃26.
|
|
ZHANG J C, LIU K, CAO W L. Property, preparation and application of nanoparticle[J]. Journal of Petrochemical Universities, 2001, 14(2): 21⁃26.
|
6 |
石怀川, 石磊. 纳米碳颗粒/氮化碳复合材料的制备及光催化性能[J]. 辽宁石油化工大学学报, 2021, 41(4): 41⁃45.
|
|
SHI H C, SHI L. Preparation and photocatalytic properties of nanocarbon particles/carbon nitride[J]. Journal of Liaoning Petrochemical University, 2021, 41(4): 41⁃45.
|
7 |
GRÖNING O, WANG S Y, YAO X L, et al. Engineering of robust topological quantum phases in graphene nanoribbons[J]. Nature, 2018, 560(7717): 209⁃213.
|
8 |
HU Y, DU A. Surface⁃anisotropy and training effects of exchange bias in nanoparticles with inverted ferromagnetic⁃antiferromagnetic core⁃shell morphology[J]. Journal of Applied Physics, 2011, 110(3): 033908.
|
9 |
DU A, MA Y, WU Z H. Magnetization and magnetic susceptibility of the ising ferromagnetic/antiferromagnetic superlattice[J]. Journal of Magnetism and Magnetic Materials, 2006, 305(1): 233⁃239.
|
10 |
MA W H. Surface tension and curie temperature in ferroelectric nanowires and nanodots[J]. Applied Physics A, 2009, 96(4): 915⁃920.
|
11 |
汤梦瑶, 孙天一, 李佳书, 等. 石墨烯与碳纳米管氢吸附性能的分子模拟[J]. 石油化工高等学校学报, 2022, 35(4): 10⁃17.
|
|
TANG M Y, SUN T Y, LI J S, et al. Molecular simulation of hydrogen adsorption properties of graphene and carbon nanotubes[J]. Journal of Petrochemical Universities, 2022, 35(4): 10⁃17.
|
12 |
王冬华. 石墨烯的制备方法及应用研究进展[J]. 当代化工, 2017, 46(9): 1934⁃1936.
|
|
WANG D H. Research progress in preparation and application of graphene[J]. Contemporary Chemical Industry, 2017, 46(9): 1934⁃1936.
|
13 |
靳爱民. 石墨烯表面结构与其摩擦性能的关系[J]. 石油炼制与化工, 2022, 53(6): 60.
|
|
JIN A M. The relationship between the surface structure of graphene and its tribological properties[J]. Petroleum Processing and Petrochemicals, 2022, 53(6): 60.
|
14 |
AFSHAR M, EMAMI F S, DARABI A, et al. Electronic structures and magnetic properties of 3D magnetic atoms adsorbed on olympicene molecule: A density functional theory study[J]. Materials Chemistry and Physics, 2017, 199: 471⁃476.
|
15 |
MASROUR R, BAHMAD L, HAMEDOUN M, et al. Dilution effect on nanographene magnetic properties[J]. Journal of Superconductivity and Novel Magnetism, 2014, 27(2): 535⁃541.
|
16 |
JABAR A, MASROUR R. Magnetic properties of Kekulene structure: A Monte Carlo study[J]. Physica A:Statistical Mechanics and its Applications, 2019, 514: 974⁃981.
|
17 |
JABAR A, MASROUR R. Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study[J]. Physica B:Condensed Matter, 2019, 514: 974⁃ 981.
|
18 |
KUMAR B, VIBOH R L, BONIFACIO M C, et al. Septulene: The heptagonal homologue of kekulene[J]. Angewandte Chemie (International ed. in English), 2012, 51(51): 12795⁃12800.
|
19 |
HAAGS A, REICHMANN A, FAN Q T, et al. Kekulene: On⁃surface synthesis, orbital structure, and aromatic stabilization[J]. ACS Nano, 2020, 14(11): 15766⁃15775.
|
20 |
SUBALAKSHMI P, SIVASHANMUGAM A. CuO nano hexagons, an efficient energy storage material for Li⁃ ion battery application[J]. Journal of Alloys and Compounds, 2017, 690: 523⁃531.
|
21 |
HASHEMIZADEH S A, VIJVIEH P K, KHABIR A, et al. Can the C32 and B16N16 nanocages be suitable anode with high performance for Li, Na and K ion batteries?[J]. Inorganic Chemistry Communications, 2018, 97: 18⁃24.
|
22 |
LIU Z P, GUO Y D, ZENG H L, et al. Electrical control of spin polarization of transmission in pure⁃carbon systems of helical graphene nanoribbons[J]. Journal of Applied Physics, 2020, 128(15): 154301.
|
23 |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16, revision B. 01[CP]. Wallingford, CT: Gaussian, Incorporated, 2016.
|
24 |
KOHN W, SHAM L J. Self⁃consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140: A1133.
|
25 |
LIN Y S, LI G D, MAO S P, et al. Long⁃range corrected hybrid density functionals with improved dispersion corrections[J]. Journal of Chemical Theory and Computation, 2013, 9(1): 263⁃272.
|
26 |
WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297⁃3305.
|
27 |
GRIMME S.Density functional theory with London dispersion corrections[J].Wiley Interdisciplinary Reviews.Computational Molecular Science, 2011, 1(2): 211⁃228.
|
28 |
LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580⁃592.
|
29 |
GEUENICH D, HESS K, KÖHLER F, et al. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization[J]. Chemical Reviews, 2005, 105(10): 3758⁃3772.
|
30 |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33⁃38.
|
31 |
李希章, 钱建华. 芳香族亲电取代反应的研究[J]. 石油化工高等学校学报, 1995,8(3): 1⁃5.
|
|
LI X Z, QIAN J H. Study of reaction of aromatic electrophilic substitution[J]. Journal of Petrochemical Universities of SINOPEC, 1995,8(3): 1⁃5.
|
32 |
VON E, DOERING W, DETERT F L. Cycloheptatrienylium oxide[J]. Journal of the American Chemical Society, 1951, 73(2): 867⁃876.
|
33 |
ZUBAREV D Y, BOLDYREV A I. Developing paradigms of chemical bonding: Adaptive natural density partitioning[J]. Physical Chemistry Chemical Physics, 2008, 10(34): 5207⁃5217.
|
34 |
MATITO E. An electronic aromaticity index for large rings[J]. Physical Chemistry Chemical Physics, 2016, 18(17): 11839⁃11846.
|
35 |
LIU Z Y, LU T, CHEN Q X. An sp⁃hybridized all⁃carboatomic ring, cyclo[18]carbon: Bonding character, electron delocalization, and aromaticity[J]. Carbon, 2020, 165: 468⁃475.
|
36 |
BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J]. The Journal of Chemical Physics, 1990, 92(9): 5397⁃5403.
|
37 |
SCHMIDER H L, BECKE A D. Chemical content of the kinetic energy density[J]. Journal of Molecular Structure ⁃ THEOCHEM, 2000, 527(1/3): 51⁃61.
|
38 |
SCHLEYER P V R, MAERKER C, DRANSFELD A, et al. Nucleus⁃independent chemical shifts: A simple and efficient aromaticity probe[J]. Journal of the American Chemical Society, 1996, 118(26): 6317⁃6318.
|
39 |
SABRINA K, ERICH K. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes⁃application in conformational and configurational analysis[J]. Journal of the Chemical Society, Perkin Transactions 2, 2001(10): 1893⁃1898.
|
40 |
MU X J, WANG J A, SUN M T. Visualization of photoinduced charge transfer and electron⁃hole coherence in two⁃photon absorption[J]. The Journal of Physical Chemistry C, 2019, 123(23): 14132–14143.
|
41 |
LU C, YU J, SHENG H, et al. Linear and nonlinear Photon⁃induced cross bridge/space charge transfer in STC molecular crystals[J]. Nanomaterials, 2022, 12(3): 535.
|
42 |
LU C, LI N, JIN Y, et al. Physical mechanisms of intermolecular interactions and cross⁃space charge transfer in two⁃photon bdbt⁃tcnb co⁃crystals[J].Nanomaterials, 2022, 12(16): 2757. (编辑 喻育红)
|