1 |
高哈尔·努拉里, 肯杰别克·赛力克汗. 二氧化碳转化制备高附加值化学品的研究[J]. 辽宁化工, 2022, 51(5): 719⁃721.
|
|
NULALI G H E, SAILIKEHAN K J B K. Study on the conversion of carbon dioxide to high value added chemicals[J]. Liaoning Chemical Industry, 2022, 51(5): 719⁃721.
|
2 |
SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365⁃2387.
|
3 |
高健, 苗成霞, 汪靖伦, 等. 二氧化碳资源化利用的研究进展[J]. 石油化工, 2010, 39(5): 465⁃475.
|
|
GAO J, MIAO C X, WANG J L, et al. Recent advances in utilization of carbon dioxide as a renewable resource[J]. Petrochemical Technology, 2010, 39(5): 465⁃475.
|
4 |
姜会心, 杨红霞, 崔梦雨, 等. 二氧化碳对稠油中沥青质分子聚集行为的影响[J]. 油田化学, 2023, 40(1): 87⁃92.
|
|
JIANG H X, YANG H X, CUI M Y, et al. Effects of CO2 on the aggregation behavior of asphaltene molecules in heavy oil[J]. Oilfield Chemistry, 2023, 40(1): 87⁃92.
|
5 |
FUKUOKA S, FUKAWA I, TOJO M, et al. A novel non⁃phosgene process for polycarbonate production from CO2: Green and sustainable chemistry in practice[J]. Catalysis Surveys from Asia, 2010, 14(3): 146⁃163.
|
6 |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced li⁃ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243⁃3262.
|
7 |
ONO Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block[J]. Applied Catalysis A: General, 1997, 155(2): 133⁃166.
|
8 |
TUNDO P, ARICÒ F, ROSAMILIA A E, et al. Reaction of dialkyl carbonates with alcohols: Defining a scale of the best leaving and entering groups[J]. Pure and Applied Chemistry, 2009, 81(11): 1971⁃1979.
|
9 |
李红梅, 赵成如, 闫元. 三亚甲基碳酸酯(TMC)的合成[J]. 齐鲁药事, 2011, 30(12): 718⁃719.
|
|
LI H M, ZHAO C R, YAN Y. Synthetic routes of trimethylene carbonate (TMC)[J]. Qilu Pharmaceutical Affairs, 2011, 30(12): 718⁃719.
|
10 |
TOMISHIGE K, FURUSAWA Y, IKEDA Y, et al. CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Catalysis Letters, 2001, 76(1): 71⁃74.
|
11 |
HONDA M, TAMURA M, NAKAO K, et al. Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2⁃cyanopyridine[J]. ACS Catalysis, 2014, 4(6): 1893⁃1896.
|
12 |
郭立峰, 李丽华, 张金生. 纳米二氧化铈粉体的表面改性研究[J]. 石油化工高等学校学报, 2012, 25(5): 1⁃5.
|
|
GUO L F, LI L H, ZHANG J S. Surface modification on nano⁃cerium oxide powder[J]. Journal of Petrochemical Universities, 2012, 25(5): 1⁃5.
|
13 |
刘文琦. 不同形貌二氧化铈的合成及其复合光催化剂的性能研究[D]. 北京: 北京化工大学, 2021.
|
14 |
刘玉娟, 许骥, 佟宇飞, 等. 氧化铈纳米材料合成方法的研究进展[J]. 辽宁石油化工大学学报, 2017, 37(5): 8⁃12.
|
|
LIU Y J, XU J, TONG Y F, et al. Progress in research of the synthesis methods of nanometer ceria[J]. Journal of Liaoning Shihua University, 2017, 37(5): 8⁃12.
|
15 |
周婧洁. 二氧化碳与甲醇合成碳酸二甲酯原位除水过程强化研究[D]. 天津: 天津大学, 2015.
|
16 |
郭晓琳. CuO⁃CeO2纳米催化剂界面结构调控及其CO选择性氧化性能研究[D]. 杭州: 浙江大学, 2019.
|
17 |
YAN H, ZHANG N Q, WANG D S. Highly efficient CeO2⁃supported noble⁃metal catalysts: From single atoms to nanoclusters[J]. Chem Catalysis, 2022, 2(7): 1594⁃1623.
|
18 |
WANG S P, ZHOU J J, ZHAO S Y, et al. Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: Thein situ hydrolysis of 2⁃cyanopyridine and crystal face effect of ceria[J]. Chinese Chemical Letters, 2015, 26(9): 1096⁃1100.
|
19 |
WU Z L, LI M J, HOWE J, et al. Probing defect sites on CeO2 nanocrystals with well⁃defined surface planes by Raman spectroscopy and O2 adsorption[J]. Langmuir, 2010, 26(21): 16595⁃16606.
|
20 |
HUANG X B, ZHANG K Y, PENG B X, et al. Ceria⁃based materials for thermocatalytic and photocatalytic organic synthesis[J]. ACS Catalysis, 2021, 11(15): 9618⁃9678.
|
21 |
BÊCHE E, CHARVIN P, PERARNAU D, et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surface and Interface Analysis, 2008, 40(3⁃4): 264⁃267.
|
22 |
WU Z L, MANN A K, LI M J, et al. Spectroscopic investigation of surface⁃dependent acid⁃base property of ceria nanoshapes[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7340⁃7350.
|
23 |
PFAU A, SCHIERBAUM K D. The electronic structure of stoichiometric and reduced CeO2 surfaces: An XPS, UPS and HREELS study[J]. Surface Science, 1994, 321(1⁃2): 71⁃80.
|
24 |
STOIAN D, BANSODE A, MEDINA F, et al. Catalysis under microscope: Unraveling the mechanism of catalyst de⁃ and re⁃activation in the continuous dimethyl carbonate synthesis from CO2 and methanol in the presence of a dehydrating agent[J]. Catalysis Today, 2017, 283: 2⁃10.
|