Infrared upconversion detectors are devices comprising an infrared photodetector (PD) and a visible light?emitting diode (LED) stacked in series, which directly convert invisible infrared signals into visible emission and enable imaging with CCD or CMOS cameras. Compared with conventional electrical readout schemes, the upconversion approach eliminates readout circuits and complex algorithms, offering simplified fabrication and reduced cost. Colloidal quantum dots (CQDs), with solution processability, tunable bandgaps, and compatibility with diverse substrates, provide a key materials platform for constructing low?cost, large?area upconversion devices that operate at room temperature. This review briefly outlines the operating mechanisms of upconversion devices, defines the key performance metrics of CQD?based upconversion detectors, and systematically surveys recent representative advances in two areas: luminescent?material engineering and device/interface engineering. Finally, we summarize the current status and challenges and propose several research directions.