In view of the irregularity of the bottom floor of working face and the diversity of the shape of the flying gangue in steeply dipping coal seam, based on the geographic information system data such as contour line of bottom floor of working face, the 3d grid model of bottom floor is established, combined with the energy tracking method(ETM) C + + programs, four typical shapes of flying gangue with the same mass and different shapes are simulated to obtain the motion trajectories of the migration of flying gangue in the actual working face, as well as the velocity, angular velocity and energy change curves at any time. The influence of the shapes on the motion of flying gangue is analyzed. In order to verify the accuracy and feasibility of the method in this paper, the trajectory simulated by Rockyfor3D software is compared. The results show that the transport capacity of ellipsoidal flying gangue is much higher than that of polyhedral flying gangue. Compared with common polyhedral flying gangue, the regular polyhedral flying gangue has farther migration distance and less energy loss due to collision. The number of edges of flying gangue of regular polyhedron is inversely proportional to the energy loss of flying gangue in collision, which indicates that flying gangue of regular polyhedron with multiple edges is most likely to cause danger.