Journal of Liaoning Petrochemical University

Journal of Liaoning Petrochemical University ›› 2010, Vol. 30 ›› Issue (3): 61-64.DOI: 10.3696/j.issn.1672-6952.2010.03.017

Previous Articles     Next Articles

Face Detection Based on Haar Feature Cascade Strong Classifier and Skin Color Model

LI Wen-na1,2   

  1.  
    1.School of Information and Control Engineering, Liaoning Shihua University, Fushun Liaoning 113001,P.R.China; 
    2.School of Information Science & Engineering, Northeastern University, Shenyang Liaoning 110004, P.R.China
  • Received:2009-05-20 Published:2010-09-25 Online:2017-07-05

基于Haar特征级联强分类器和肤色模型的人脸检测

李文娜1,2   

  1. 1.辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001;2.东北大学信息科学与工程学院,辽宁沈阳110004
  • 作者简介:李文娜(1976-),女,辽宁昌图县,讲师,在读博士。
  • 基金资助:
    辽宁省教育厅科学计划项目(2008386)。

Abstract: A novel method of fast face detection algorithm based on Harr feature cascade strong classifier and skin color model was proposed. By using cascade strong classifier, human faces were detected rapidly based on the characteristics of the face Haar. The face region to sentence was selected by using skin color clustering model. The experiment led up to the fact that false detection rate is low and the speed for detection is fast and the algorithm is valuable in practical use.

 

Key words: Haar wavelet transform , Face detection , AdaBoost cascade classifier , Feature scaling and translating

摘要: 提出了基于Haar特征级联强分类器和肤色模型校验的快速人脸检测算法。利用基于人脸Haar特
征的级联强分类器快速检测人脸,得到待判人脸区域,其中可能含有非人脸误检区域;利用肤色聚类模型对待判人
脸区域进行筛选,过滤误检的非人脸区域。实验结果表明,该算法误检率低,检测速度快,在实际应用中有一定的价
值。

关键词: Haar小波变换 , 人脸检测 , AdaBoost级联分类器 ,  , 特征缩放与平移

Cite this article

LI Wen-na1,2. Face Detection Based on Haar Feature Cascade Strong Classifier and Skin Color Model[J]. Journal of Liaoning Petrochemical University, 2010, 30(3): 61-64.

李文娜. 基于Haar特征级联强分类器和肤色模型的人脸检测[J]. 辽宁石油化工大学学报, 2010, 30(3): 61-64.