1 |
ZHU Z W, ZHOU X H, SHAO K. A novel approach based on Neo4j for multi⁃constrained flexible job shop scheduling problem[J]. Computers & Industrial Engineering, 2019, 130: 671⁃686.
|
2 |
AMIN A A, MAQSOOD M T, MAHMOOD⁃UL⁃HASAN K. Surge protection of centrifugal compressors using advanced anti⁃surge control system[J]. Measurement & Control, 2021, 54(5⁃6): 967⁃982.
|
3 |
HEINRICH C R, KÜHHORN A, STEFF K, et al. Generalized model for the approximation of coupled acousto⁃mechanical natural frequencies in high⁃pressure centrifugal compressors[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(7): 071022.
|
4 |
郑春峰,杨万有,李昂,等.一种新型井下三级高效气液分离器分离特性实验[J].石油钻采工艺, 2020, 42(6): 804⁃810.
|
|
ZHENG C F, YANG W Y, LI A, et al. Experimental on the separation behaviors of a new type of three⁃stage efficient downhole gas⁃liquid separator[J]. Oil Drilling & Production Technology, 2020, 42(6): 804⁃810.
|
5 |
熊小琴, 廖涛, 邢晓凯, 等. 二氧化碳驱采出流体特性及其分离研究进展[J]. 新疆石油天然气, 2022, 18(2): 33⁃39.
|
|
XIONG X Q, LIAO T, XING X K, et al. Study progress on characteristics and separation of produced fluid of CO2 flooding[J]. Xinjiang Oil & Gas, 2022, 18(2): 33⁃39.
|
6 |
丁怡婷. 我国能源利用效率大幅提升[N]. 人民日报, 2024⁃08⁃28(10).
|
7 |
于洋洋, 刘冬, 陈国栋, 等. 状态监测技术在BCL 527/A型离心压缩机故障诊断中的应用[J]. 压缩机技术, 2023(3): 60⁃64.
|
|
YU Y Y, LIU D, CHEN G D, et al. Application of condition monitoring technology in fault diagnosis of BCL 527/A centrifugal compressor[J]. Compressor Technology, 2023(3): 60⁃64.
|
8 |
朱广贺, 朱智强, 李娟. 基于包络解调的离心式压缩机弱故障信号增强方法研究[J]. 机械与电子, 2022, 40(5): 21⁃24.
|
|
ZHU G H, ZHU Z Q, LI J. Research on weak fault signal enhancement method of centrifugal compressor based on envelope demodulation[J]. Machinery & Electronics, 2022, 40(5): 21⁃24.
|
9 |
祝勇仁, 蔡杰, 善盈盈. 基于蚁群聚类算法的离心式压缩机故障诊断方法[J]. 油气储运, 2019, 38(4): 424⁃428.
|
|
ZHU Y R, CAI J, SHAN Y Y. A fault diagnosis method for centrifugal compressors based on ant colony clustering algorithm[J]. Oil & Gas Storage and Transportation, 2019, 38(4): 424⁃428.
|
10 |
WANG Y, HU S L. State monitoring and fault prediction of centrifugal compressors based on long short⁃term memory and principal component analysis (LSTM⁃PCA)[J]. Peerj Computer Science, 2024, 10: e2433.
|
11 |
MOCHAMMAD S, KANG Y J, NOH Y, et al. Stable hybrid feature selection method for compressor fault diagnosis[J]. IEEE Access, 2021, 9: 97415⁃97429.
|
12 |
NUÑEZ D L, BORSATO M. OntoProg: An ontology⁃based model for implementing prognostics health management in mechanical machines[J]. Advanced Engineering Informatics, 2018, 38: 746⁃759.
|
13 |
QIANG Z, PING Y, YANG X. Research on a knowledge modelling methodology for fault diagnosis of machine tools based on formal semantics[J]. Advanced Engineering Informatics, 2017, 32: 92⁃112.
|
14 |
王明达, 李云飞, 吴志生, 等. 面向燃驱压缩机组的故障知识本体建模及应用研究[J]. 安全与环境学报, 2023, 23(10): 3472⁃3482.
|
|
WANG M D, LI Y F, WU Z S, et al. Research on fault knowledge ontology modeling and application for combustion⁃driven compressor units[J]. Journal of Safety and Environment, 2023, 23(10): 3472⁃3482.
|
15 |
盛林, 马波, 张杨. 基于知识图谱的旋转机械故障诊断方法[J]. 机电工程, 2022, 39(9): 1194⁃1202.
|
|
SHENG L, MA B, ZHANG Y. Fault diagnosis method for rotating machinery based on knowledge graph[J]. Mechanical & Electrical Engineering Magazine, 2022, 39(9): 1194⁃1202.
|
16 |
ZHOU Q, YAN P, LIU H Y, et al. A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis[J]. Journal of Intelligent Manufacturing, 2019, 30(4): 1693⁃1715.
|
17 |
剡昌锋, 栗宇, 王慧滨, 等. 基于本体的汽轮发电机组故障诊断知识建模[J]. 兰州理工大学学报, 2020, 46(5): 41⁃48.
|
|
SHAN C F, LI Y, WANG H B, et al. Knowledge modeling of fault diagnosis for turbine generator sets based on ontology[J]. Journal of Lanzhou University of Technology, 2020, 46(5): 41⁃48.
|
18 |
朱俊杰, 任鑫, 郝延, 等. 风电机组故障知识的获取表达与推理框架[J]. 热力发电, 2023, 52(3): 73⁃80.
|
|
ZHU J J, REN X, HAO Y, et al. Acquisition, expression and reasoning framework of wind turbine fault knowledge[J]. Thermal Power Generation, 2023, 52(3): 73⁃80.
|
19 |
周强. 机床故障诊断知识建模和可配置系统构建方法研究[D]. 重庆: 重庆大学, 2018.
|
20 |
卜伟琼, 陈益能. 长沙市旅游知识领域本体的构建研究[J]. 福建电脑, 2023, 39(12): 48⁃51.
|
|
BU W Q, CHEN Y N. Research on the construction of tourism knowledge domain ontology in Changsha city[J]. Fujian Computer, 2023, 39(12): 48⁃51.
|
21 |
刘佳伟, 王军生, 金鹏, 等. 面向智能制造的知识图谱驱动设备故障诊断方法研究[C]//第十四届中国钢铁年会论文集⁃14.冶金自动化与智能化. 重庆: 中国金属学会, 2023: 54⁃64.
|
22 |
冯瑶,冯锡炜,黄越洋.基于一阶逻辑的个性化E⁃Learning本体推理研究[J].辽宁石油化工大学学报,2016,36(1):65⁃70.
|
|
FENG Y, FENG X W, HUANG Y Y. Research on reasoning and ontologies for personalized E⁃Learning based on first⁃order logic[J]. Journal of Liaoning Shihua University, 2016, 36(1): 65⁃70.
|
23 |
李媛媛, 陈长胜. 基于井位部署业务的勘探开发领域业务过程本体构建[J]. 东北石油大学学报, 2016, 40(2): 64⁃70.
|
|
LI Y Y, CHEN C S. Research on the business progress ontology of petroleum exploration and production: A case analysis of well deployment[J]. Journal of Northeast Petroleum University, 2016, 40(2): 64⁃70.
|
24 |
李娜, 邓寒冰, 朴在林, 等. 面向农业领域知识的自适应决策模型研究[J]. 沈阳农业大学学报, 2016, 47(4): 505⁃512.
|
|
LI N, DENG H B, PIAO Z L, et al. Self⁃adaptive decision model based on agricultural knowledge[J]. Journal of Shenyang Agricultural University, 2016, 47(4): 505⁃512.
|
25 |
王亚, 曹存根. 基于事件属性的事件分类研究[J]. 中文信息学报, 2020, 34(10): 39⁃50.
|
|
WANG Y, CAO C G. Research on categorization of events based on event attributes[J]. Journal of Chinese Information Processing, 2020, 34(10): 39⁃50.
|
26 |
张晨, 朝乐门, 靳庆文. 机器可理解的数据故事语义描述及推理方法研究[J]. 图书情报工作, 2023, 67(20): 142⁃150.
|
|
ZHANG C, ZHAO L M, JIN Q W. Research on semantic description and reasoning method of machine⁃understandable data story[J]. Library and Information Service, 2023, 67(20): 142⁃150.
|
27 |
ZHAI Z Y, MARTÍNEZ ORTEGA J F, LUCAS MARTÍNEZ N, et al. A rule⁃based reasoner for underwater robots using OWL and SWRL[J]. Sensors, 2018, 18(10): 3481.
|
28 |
WANG X H, WONG T N, FAN Z P. Ontology⁃based supply chain decision support for steel manufacturers in China[J]. Expert Systems with Applications, 2013, 40(18): 7519⁃7533.
|
29 |
何苗苗, 彭其渊, 鲁工圆, 等. 基于本体的列车运行调整知识库构建研究[J]. 综合运输, 2021, 43(8): 83⁃89.
|
|
HE M M, PENG Q Y, LU G Y, et al. The construction of train operation adjustment based on ontology[J]. China Transportation Review, 2021, 43(8): 83⁃89.
|
30 |
叶帅. 基于Neo4j的煤矿领域知识图谱构建及查询方法研究[D]. 徐州: 中国矿业大学, 2019.
|