1 |
王宇轩, 花敬贤, 潘宜昌, 等. 两步干凝胶转化法制备UiO⁃66膜并用于己烷异构体的高效分离[J]. 石油炼制与化工, 2024, 55(1): 112⁃121.
|
|
WANG Y X, HUA J X, PAN Y C, et al. Fabrication of UiO⁃66 membrane by two⁃step dry gel conversion for efficient separation of hexane isomer[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 112⁃121.
|
2 |
陈晓露, 霍苗苗, 刘小敏, 等. 新型固态胺基功能化CO2吸收材料研究进展[J]. 低碳化学与化工, 2023, 48(3): 98⁃106.
|
|
CHEN X L, HUO M M, LIU X M, et al. Research progress on new solid amine⁃functionalized CO2 absorbing materials[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(3): 98⁃106.
|
3 |
于小荣, 吉仁静, 杨欢, 等. 燃烧后二氧化碳捕集材料的研究进展[J]. 低碳化学与化工, 2023, 48(5): 82⁃94.
|
|
YU X R, JI R J, YANG H, et al. Research progress of post⁃combustion carbon dioxide capture materials[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(5): 82⁃94.
|
4 |
ZHANG X D, YANG Y, HUANG W Y, et al. g⁃C3N4/UiO⁃66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation[J]. Materials Research Bulletin, 2018, 99: 349⁃358.
|
5 |
SO M C, WIEDERRECHT G P, MONDLOCH J E, et al. Metal⁃organic framework materials for light⁃harvesting and energy transfer[J]. Chemical Communications, 2015, 51(17): 3501⁃3510.
|
6 |
WANG J L, WANG C, LIN W B. Metal⁃organic frameworks for light harvesting and photocatalysis[J]. ACS Catalysis, 2012, 2(12): 2630⁃2640.
|
7 |
齐永娟, 宫晓杰, 张丹, 等. 单模聚焦微波法制备MIL⁃53(Fe)及其光催化性能研究[J]. 石油化工高等学校学报, 2021, 34(5): 24⁃29.
|
|
QI Y J, GONG X J, ZHANG D, et al. Preparation and photocatalytic performance of MIL⁃53 (Fe) by single⁃mode focused microwave[J]. Journal of Petrochemical Universities, 2021, 34(5): 24⁃29.
|
8 |
陈旭东, 陶志平, 赵杰, 等. 金属负载型MOFs催化剂的制备方法及在催化加氢中的应用进展[J]. 石油炼制与化工, 2021, 52(8): 115⁃121.
|
|
CHEN X D, TAO Z P, ZHAO J, et al. Progress of preparing methods of metal supporting MOFs catalysts and application in catalytic hydrogenation[J]. Petroleum Processing and Petrochemicals, 2021, 52(8): 115⁃121.
|
9 |
李想, 张艳梅, 张静, 等. UiO⁃66⁃NH2负载Pd催化剂的合成、表征及其催化反应[J]. 辽宁石油化工大学学报, 2017, 37(1): 8⁃13.
|
|
LI X, ZHANG Y M, ZHANG J, et al. Synthesis, characterization and catalytic reaction of UiO⁃66⁃NH2 supported Pd catalyst[J]. Journal of Liaoning Petrochemical University, 2017, 37(1): 8⁃13.
|
10 |
EBRAHIM N, ELNAZ M K, ESMAIL S, et al. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen⁃printed carbon electrode modified with the open⁃ended channels of Zn(Ⅱ)⁃MOF[J]. New Journal of Chemistry, 2020, 44(22): 9271⁃9277.
|
11 |
NAGHIAN E, SHAHDOST⁃FARD F, SOHOULI E, et al. Electrochemical determination of levodopa on a reduced graphene oxide paste electrode modified with a metal⁃organic framework[J]. Microchemical Journal, 2020, 156: 104888.
|
12 |
SOHOULI E, SADEGHPOUR KARIMI M, MARZI KHOSROWSHAHI E, et al. Fabrication of an electrochemical mesalazine sensor based on ZIF⁃67[J]. Measurement, 2020, 165: 108140.
|
13 |
DAI Y J, LIU M, LI J J, et al. A review on pollution situation and treatment methods of tetracycline in groundwater[J]. Separation Science & Technology, 2019, 55(5): 1005⁃1021.
|
14 |
XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment, 2021, 753: 141975.
|
15 |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772⁃6782.
|
16 |
JIANG Y H, LI M X, GUO C S, et al. Distribution and ecological risk of antibiotics in a typical effluent⁃receiving river(Wangyang River)in North China[J]. Chemosphere, 2014, 112: 267⁃274.
|
17 |
XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environmental Pollution, 2016, 213: 833⁃840.
|
18 |
YAO L L, WANG Y X, TONG L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135: 236⁃242.
|
19 |
LI S, SHI W Z, LIU W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016)[J]. Science of the Total Environment, 2018, 615: 906⁃917.
|
20 |
LI S, LIU Y, WU Y, et al. Antibiotics in global rivers[J]. National Science Open, 2022, 1(2): 20220029.
|
21 |
WANG Z Y, CHEN Q W, ZHANG J Y, et al. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze river[J]. Journal of Environmental Management, 2019, 244: 13⁃22.
|
22 |
LI N, HO K W K, YING G G, et al. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong[J]. Environment International, 2017, 108: 246⁃252.
|
23 |
BAI Y, RUAN X H, XIE X C, et al. Antibiotic resistome profile based on metagenomics in raw surface drinking water source and the influence of environmental factor: A case study in Huaihe river basin, China[J]. Environmental Pollution, 2019, 248: 438⁃447.
|
24 |
BAZGIR S, FARHADI S, MANSOURPANAH Y. Adsorptive removal of tetracycline and ciprofloxacin antibiotics from water using magnetic MIL101⁃Fe metal⁃organic framework/NiFe2O4 decorated with Preyssler⁃Pope⁃Jeannin[NaP5W30O110]14⁃polyanion[J]. Journal of Solid State Chemistry, 2022, 315: 123513.
|
25 |
FANG S Y, GONG J L, TANG L, et al. Loosely sandwich⁃structured membranes decorated with UiO⁃66⁃NH2 for efficient antibiotic separation and organic solvent resistance[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38990⁃39003.
|
26 |
ZHU T T, SU Z X, LAI W X, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776: 145906.
|
27 |
AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review[J]. Journal of Hazardous Materials, 2017, 323: 274⁃298.
|
28 |
WANG S W, YANG S S, QUISPE E, et al. Removal of antibiotic resistant bacteria and genes by UV⁃Assisted electrochemical oxidation on degenerative TiO2 nanotube arrays[J]. ACS ES&T Engineering, 2021, 1(3): 612⁃622.
|
29 |
MASOOD Z, IKHLAQ A, FAROOQ U, et al. Removal of anti⁃biotics from veterinary pharmaceutical wastewater using combined electroflocculation and Fe⁃Zn loaded zeolite 5A based catalytic ozonation process[J]. Journal of Water Process Engineering, 2022, 49: 103039.
|
30 |
王有杰, 赵显一. 金属掺杂改性TiO2光催化的研究[J]. 当代化工, 2023, 52(10): 2275⁃2279.
|
|
WANG Y J, ZHAO X Y. Metal⁃doped modified TiO2 photocatalysis[J]. Contemporary Chemical Industry, 2023, 52(10): 2275⁃2279.
|
31 |
王远港, 赵显一. 金属掺杂氧化锌光催化性能的研究进展[J]. 当代化工, 2023, 52(7): 1691⁃1695.
|
|
WANG Y G, ZHAO X Y. Research progress in photocatalytic properties of metal⁃doped ZnO[J]. Contemporary Chemical Industry, 2023, 52(7): 1691⁃1695.
|
32 |
WU Q H, ABDETA A B, KOU D H, et al. A molybdenum sulfo⁃oxide/cobalt oxysulfide Z⁃scheme heterojunction catalyst for efficient photocatalytic hydrogen production and pollutant reduction[J]. Journal of Materials Chemistry A, 2022, 10: 5328⁃5349.
|
33 |
KUANG X Y, DENG X Y, MA Y W, et al. Type Ⅱ heterojunction promotes photoinduced effects of TiO2 for enhancing photocatalytic performance[J]. Journal of Materials Chemistry C, 2022, 10(16): 6341⁃6347.
|
34 |
TAN Q M, ZHANG W S, LIU T R, et al. Magnetically induced construction of core⁃shell architecture Fe3O4@TiO2⁃Co nanocomposites for effective photocatalytic degradation of tetracycline[J]. New Journal of Chemistry, 2023, 47(34): 15951⁃15962.
|
35 |
李君超, 蒋进元, 张伟, 等. 纳米Fe/Co合金类Fenton降解盐酸四环素及影响因素[J]. 环境科学研究, 2018, 31(4): 757⁃764.
|
|
LI J C, JIANG J Y, ZHANG W, et al. Oxidative degradation of tetracycline hydrochloride using Nano Fe/Co alloy and H2O2 under Fenton conditions[J]. Research of Environmental Sciences, 2018, 31(4): 757⁃764.
|
36 |
牛紫嫣, 郭世龙, 乔枫瑞, 等. LaCoO3钙钛矿型催化剂的制备及其光催化降解盐酸四环素的研究[J]. 现代化工, 2023, 43(3): 163⁃170.
|
|
NIU Z Y, GUO S L, QIAO F R, et al. Preparation of LaCoO3 perovskite catalyst and its application in photocatalytic degradation of tetracycline hydrochloride[J]. Modern Chemical Industry, 2023, 43(3): 163⁃170.
|
37 |
余阳, 陈团伟, 甄文博, 等. UiO⁃66(Zr)对As3+的吸附性能及吸附动力学研究[J]. 食品与机械, 2016, 32(6): 61⁃67.
|
|
YU Y, CHEN T W, ZHEN W B, et al. Study on the adsorption properties and adsorption dynamics of UiO⁃66(Zr) for As3+[J]. Food and Machinery, 2016, 32(6): 61⁃67.
|
38 |
李岩松, 罗惜阔, 许海涛, 等. 负载型催化剂Au(Pd)@UIO⁃66的制备及其催化性能[J]. 华东理工大学学报(自然科学版), 2017, 43(6): 749⁃755.
|
|
LI Y S, LUO X K, XU H T, et al. Preparation and catalytic performance of supported catalysts Au(Pd)@UIO⁃66[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2017, 43(6): 749⁃755.
|
39 |
史琳, 叶倩玲, 杨琦, 等. UiO⁃66/氧化石墨烯的制备及对水中四氯化碳的吸附[J]. 环境工程学报, 2019, 13(5): 1063⁃1072.
|
|
SHI L, YE Q L, YANG Q, et al. Absorption of carbon tetrachloride from aqueous solution by synthesized UiO⁃66/graphene oxide[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1063⁃1072.
|
40 |
GAO H J, YANG H, YANG G X, et al. Effects of oxygen vacancy and sintering temperature on the photoluminescence properties and photocatalytic activity of CeO2 nanoparticles with high uniformity[J]. Materials Technology, 2018, 33(5): 321⁃332.
|
41 |
HERNEY⁃RAMIREZ J, VICENTE M A, MADEIRA L M. Heterogeneous photo⁃Fenton oxidation with pillared clay⁃based catalysts for wastewater treatment: A review[J]. Applied Catalysis B: Environmental, 2010, 98(1/2): 10⁃26.
|
42 |
Li B, Zhu X, Hu K, et al. Defect creation in metal⁃organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution[J]. Journal of Hazardous Materials, 2016, 302: 57⁃64.
|
43 |
Herney⁃Ramirez J, Vicente M A, Madeira L M. Heterogeneous photo⁃Fenton oxidation with pillared clay⁃based catalysts for wastewater treatment[J]. Applied Catalysis B: Environmental, 2010, 98: 10⁃26.
|