1 |
MILLSTONE J E, PARK S, SHUFORD K L, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms[J]. Journal of the American Chemical Society, 2005, 127(15): 5312⁃5313.
|
2 |
ZHENG Y Q, TAO J, LIU H Y, et al. Facile synthesis of gold nanorice enclosed by high⁃index facets and its application for CO oxidation[J]. Small, 2011, 7(16): 2307⁃2312.
|
3 |
PARK J E, LEE Y, NAM J M. Precisely shaped, uniformly formed gold nanocubes with ultrahigh reproducibility in single⁃particle scattering and surface⁃enhanced raman scattering[J]. Nano Letters, 2018, 18(10): 6475⁃6482.
|
4 |
KWON K, LEE K Y, LEE Y W, et al. Controlled synthesis of icosahedral gold nanoparticles and their surface⁃enhanced raman scattering property[J]. The Journal of Physical Chemistry C, 2007, 111(3): 1161⁃1165.
|
5 |
SPANHEL L, WELLER H, HENGLEIN A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles[J]. Journal of the American Chemical Society, 1987, 109(22): 6632⁃6635.
|
6 |
YOUN H C, BARAL S, FENDLER J H. Dihexadecyl phosphate, vesicle⁃stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: Preparation and utilization for photosensitized charge separation and hydrogen generation[J]. The Journal of Physical Chemistry, 1988, 92(22): 6320⁃6327.
|
7 |
冯艳林. 纳米材料性质⁃活性关系调控下的安全性设计及生物医学应用[D]. 合肥: 中国科学技术大学, 2019.
|
8 |
LI J F, HU J W, REN B, et al. Tuning the SERS activity of Au@Pd core⁃shell nanoparticles by controlling the thickness of the Pd shell[J]. Acta Physico⁃Chimica Sinica, 2005, 21(8): 825⁃828.
|
9 |
WANG F, DENG R R, WANG J, et al. Tuning upconversion through energy migration in core⁃shell nanoparticles[J]. Nature Materials, 2011, 10(12): 968⁃973.
|
10 |
STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62⁃69.
|
11 |
LIZ⁃MARZÁN L M, GIERSIG M, MULVANEY P. Synthesis of nanosized gold⁃silica core⁃shell particles[J]. Langmuir, 1996, 12(18): 4329⁃4335.
|
12 |
LU Y, YIN Y D, LI Z Y, et al. Synthesis and self⁃assembly of Au@SiO2 core⁃shell colloids[J]. Nano Letters, 2002, 2(7): 785⁃788.
|
13 |
GRAF C, VOSSEN D L J, IMHOF A, et al. A general method to coat colloidal particles with silica[J]. Langmuir, 2003, 19(17): 6693⁃6700.
|
14 |
ZHAO Y, SALEH A A E, DIONNE J A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers[J]. ACS Photonics, 2016, 3(3): 304⁃309.
|
15 |
FRANK B, YIN X H, SCHÄFERLING M, et al. Large⁃area 3D chiral plasmonic structures[J]. ACS Nano, 2013, 7(7): 6321⁃6329.
|
16 |
SHAH R R. Thalidomide, drug safety and early drug regulation in the UK[J]. Adverse Drug Reactions and Toxicological Reviews, 2001, 20(4): 199⁃255.
|
17 |
KELLY S M, JESS T J, PRICE N C. How to study proteins by circular dichroism[J]. Biochimica et Biophysica Acta (BBA)⁃Proteins and Proteomics, 2005, 1751(2): 119⁃139.
|
18 |
MAIER S A. Surface plasmon polaritons at metal/insulator interfaces[M]. New York: Springer, 2007: 21⁃37.
|
19 |
LU F, TIAN Y, LIU M Z, et al. Discrete nanocubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145⁃3151.
|
20 |
HA J M, SOLOVYOV A, KATZ A. Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: Origin of chiral surface plasmon resonance[J]. Langmuir, 2009, 25(1): 153⁃158.
|
21 |
GAUTIER C, BÜRGI T. Chiral gold nanoparticles[J]. ChemPhysChem, 2009, 10(3): 483⁃492.
|
22 |
CATHCART N, MISTRY P, MAKRA C, et al. Chiral thiol⁃stabilized silver nanoclusters with well⁃resolved optical transitions synthesized by a facile etching procedure in aqueous solutions[J]. Langmuir, 2009, 25(10): 5840⁃5846.
|
23 |
LIEBERMAN I, SHEMER G, FRIED T, et al. Plasmon⁃resonance⁃enhanced absorption and circular dichroism[J]. Angewandte Chemie International Edition, 2008, 47(26): 4855⁃4857.
|
24 |
GOVOROV A O, FAN Z Y. Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media[J]. ChemPhysChem, 2012, 13(10): 2551⁃2560.
|
25 |
RHEE H, CHOI J S, STARLING D J, et al. Amplifications in chiroptical spectroscopy, optical enantioselectivity, and weak value measurement[J]. Chemical Science, 2013, 4(11): 4107⁃4114.
|
26 |
SHUKLA N, BARTEL M A, GELLMAN A J. Enantioselective separation on chiral Au nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(25): 8575⁃8580.
|
27 |
LI J F, TIAN X D, LI S B, et al. Surface analysis using shell⁃isolated nanoparticle⁃enhanced raman spectroscopy[J]. Nature Protocols, 2013, 8(1): 52⁃65.
|
28 |
MIE G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen der Physik, 1908, 330(3): 377⁃445.
|
29 |
STRETTON J A. Electromagnetic theory[M]. Hoboken: Wiley⁃IEEE Press, 1941.
|
30 |
SINZIG J, QUINTEN M. Scattering and absorption by spherical multilayer particles[J]. Applied Physics A, 1994, 58(2): 157⁃162.
|
31 |
JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370⁃4379.
|
32 |
杨泽华, 郭杨喆, 方蔚瑞. 多层球壳结构中等离激元与手性分子的相互作用[J]. 陕西师范大学学报(自然科学版), 2022, 50(1): 1⁃11.
|
33 |
BASTÚS N G, COMENGE J, PUNTES V. Kinetically controlled seeded growth synthesis of citrate⁃stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening[J]. Langmuir, 2011, 27(17): 11098⁃11105.
|
34 |
HENDRY E, CARPY T, JOHNSTON J, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nature Nanotechnology, 2010, 5(11): 783⁃787.
|
35 |
KIM T, PARK Q H. Molecular chirality detection using plasmonic and dielectric nanoparticles[J]. Nanophotonics, 2022, 11(9): 1897⁃1904.
|