1 |
何家钦. 我国水体重金属污染现状与治理方法研究[J]. 中国金属通报, 2018(4): 242⁃244.
|
2 |
王耀, 梅向阳, 段正洋, 等. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 材料导报, 2017,31(19): 135⁃143.
|
3 |
蔡华敏, 韩巍, 蒋鑫, 等. 水中铬(Ⅵ)离子的去除研究进展[J]. 山东化工, 2020,49(3): 53⁃54.
|
4 |
李斗, 赵由才, 宋立岩, 等. 六价铬细菌还原的分子机制研究进展[J]. 环境科学, 2014,35(4): 1602⁃1612.
|
5 |
牛耀岚, 吴曼菲, 胡湛波. 吸附法处理水体重金属污染的研究进展[J]. 华北水利水电大学学报(自然科学版), 2019,40(2): 46⁃51.
|
6 |
李音, 单胜道, 杨瑞芹, 等. 低温水热法制备竹生物炭及其对有机物的吸附性能[J]. 农业工程学报, 2016,32(24): 240⁃247.
|
7 |
王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019,38(1): 692⁃706.
|
8 |
Kumar S, Masto R E, Ram L C, et al. Biochar preparation from Parthenium hysterophorus and its potential use in soil application[J]. Ecological Engineering, 2013,55: 67⁃72.
|
9 |
赵洁, 贺宇宏, 张晓明, 等. 酸碱改性对生物炭吸附Cr(Ⅵ)性能的影响[J]. 环境工程, 2020,38(6): 28⁃34.
|
10 |
Zhou Y M, Gao B, Zimmerman A R, et al. Sorption of heavy metals on chitosan⁃modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013,231: 512⁃518.
|
11 |
王丽丽, 刘醒醒, 张慧佳, 等. 氨基壳聚糖吸附材料对重金属和抗生素吸附性能研究[J]. 应用化工, 2021, 50(6): 1482⁃1486.
|
12 |
周谨. 稀土在废水处理中的应用进展[J]. 化工环保, 2009,29(4): 335⁃338.
|
13 |
李彬, 宁平, 金建琼, 等. 稀土吸附剂处理含铬微污染水研究[J]. 水处理技术, 2006(4): 43⁃45.
|
14 |
Wang B, Li F, Wang L. Enhanced hexavalent chromium (Cr(Ⅵ)) removal from aqueous solution by Fe⁃Mn oxide⁃modified cattail biochar: Adsorption characteristics and mechanism[J]. Chemistry and Ecology, 2020,36(2): 138⁃154.
|
15 |
Zhang M, Liu Y, Li T, et al. Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(Ⅵ)from aqueous solution[J]. RSC Advances, 2015,5(58): 46955⁃46964.
|
16 |
Zhang H, Xiao R, Li R, et al. Enhanced aqueous Cr(Ⅵ) removal using chitosan⁃modified magnetic biochars derived from bamboo residues[J]. Chemosphere, 2020, 261: 127694.
|
17 |
Xu Y, Bai T, Yan Y, et al. Enhanced removal of hexavalent chromium by different acid⁃modified biochar derived from corn straw: Behavior and mechanism[J]. Water Science & Technology, 2020,81(10): 2270⁃2280.
|
18 |
Peng Z, Liu X, Chen H, et al. Characterization of ultraviolet⁃modified biochar from different feedstocks for enhanced removal of hexavalent chromium from water[J]. Water Science and Technology, 2019,79(9): 1705⁃1716.
|
19 |
张宏, 朱振亚, 姜英宇, 等. 壳聚糖和FeS改性生物炭吸附四环素:吸附机制与位能分布[J]. 环境科学学报, 2020,40(12): 4306⁃4317.
|
20 |
张继义, 韩雪, 武英香, 等. 炭化小麦秸秆对水中氨氮吸附性能的研究[J]. 安全与环境学报, 2012,12(1): 32⁃36.
|
21 |
Hydari S, Sharififard H, Nabavinia M, et al. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium[J]. Chemical Engineering Journal, 2012,193⁃194: 276⁃282.
|
22 |
Hoang L P, Van H T, Nguyen L H, et al. Removal of Cr(Ⅵ) from aqueous solution using magnetic modified biochar derived from raw corncob[J]. New Journal of Chemistry, 2019,43(47): 18663⁃18672.
|
23 |
Gan C, Liu Y, Tan X, et al. Effect of porous zinc⁃biochar nanocomposites on Cr(Ⅵ) adsorption from aqueous solution[J]. RSC Advances, 2015,5(44): 3517⁃35115.
|
24 |
Selvi K, Pattabhi S, Kadiryelu K. Removal of Cr(Ⅵ) from aqueous solution by adsorption onto activated carbon[J]. Bioresource Technology, 2001,80: 87⁃89.
|
25 |
臧运波. 重金属Cr(Ⅵ)、Cu(Ⅱ)在类水滑石和皂土上的吸附行为[D]. 济南: 山东大学, 2007.
|
26 |
李刘刚. 改性农林废弃物生物炭吸附Cr(Ⅵ)的性能及机理研究[D]. 长沙: 中南林业科技大学, 2018.
|
27 |
Shen Y S, Wang S L, Tzou Y M, et al. Removal of hexavalent Cr by coconut coir and derived chars——The effect of surface functionality[J]. Bioresource Technology, 2012,104: 165⁃172.
|
28 |
甘超. 改性生物炭的表征特性及其对Cr(Ⅵ)的吸附性能研究[D]. 长沙: 湖南大学, 2016.
|
29 |
任婧. 铁/生物炭复合材料的制备及对水中磷的吸附性能的研究[D]. 天津: 天津大学, 2016.
|
30 |
Jiang L, Liu S, Liu Y, et al. Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β⁃cyclodextrin/poly (L⁃glutamic acid)[J]. Environmental Science and Pollution Research International, 2017,24(30): 23528⁃23537.
|