Journal of Liaoning Petrochemical University

Journal of Liaoning Petrochemical University ›› 2023, Vol. 43 ›› Issue (2): 78-85.DOI: 10.12422/j.issn.1672-6952.2023.02.013

• Information and Control Engineering • Previous Articles     Next Articles

An Efficient Implementation Method of the Apriori Algorithm and its Application

Chunxu Wu(), Yinshan Jia(), Hongfei Yu   

  1. School of Artificial Intelligence and Software,Liaoning Petrochemical University,Fushun Liaoning 113001,China
  • Received:2021-07-10 Revised:2021-11-16 Published:2023-04-25 Online:2023-05-04
  • Contact: Yinshan Jia

一种Apriori算法的高效实现方法及其应用

吴春旭(), 贾银山(), 于红绯   

  1. 辽宁石油化工大学 人工智能与软件学院,辽宁 抚顺 113001
  • 通讯作者: 贾银山
  • 作者简介:吴春旭(1995⁃),男,硕士研究生,从事机器学习、数据挖掘方面研究;E⁃mail:WuChunxu1a@163.com
  • 基金资助:
    国家自然科学基金项目(1702247)

Abstract:

Aiming at the low efficiency of Apriori algorithm in scanning database and low dimensional frequent itemset, an efficient implementation method of Apriori algorithm was proposed, which is called EI_Apriori algorithm. This method utilizes the vector?based storage structure and pre?pruning to reduce the number of scanning databases and low?dimensional frequent itemsets and thus improves the efficiency of the Apriori algorithm. According to the actual situation of student achievement analysis, the constraints on the sequence relationship between courses are added in the association rule mining, and the constraints on the score level range are added in the association rules. The adjusted EI_Apriori algorithm was applied in score association analysis. The results show that the EI_Apriori algorithm can accurately find the association rules that meet the real needs, which proves the superiority of EI_Apriori algorithm.

Key words: Association analysis, Reform in education, Data mining, Apriori algorithm, Association rules

摘要:

针对Apriori算法在扫描数据库和低维频繁项集时效率较低的问题,提出了一种基于Apriori算法的高效实现方法EI_Apriori算法。该方法基于向量的存储结构和预剪枝,降低了扫描数据库和低维频繁项集的次数,进而提高了Apriori算法的效率。根据学生成绩分析的实际情况,在关联规则挖掘中增加了课程间先后关系的约束,在关联规则中增加了对成绩等级区间的约束,将调整后的EI_Apriori算法在成绩关联分析中进行了应用。结果表明,EI_Apriori算法能精确地找到符合现实需求的关联规则,证明了EI_Apriori算法的优越性。

关键词: 关联分析, 教学改革, 数据挖掘, Apriori算法, 关联规则

CLC Number: 

Cite this article

Chunxu Wu, Yinshan Jia, Hongfei Yu. An Efficient Implementation Method of the Apriori Algorithm and its Application[J]. Journal of Liaoning Petrochemical University, 2023, 43(2): 78-85.

吴春旭, 贾银山, 于红绯. 一种Apriori算法的高效实现方法及其应用[J]. 辽宁石油化工大学学报, 2023, 43(2): 78-85.