1 |
刘晓燕.特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D].大庆:大庆石油学院,2005.
|
2 |
蒋琪,游红娟,潘竟军,等.稠油开采技术现状与发展方向初步探讨[J].特种油气藏,2020,27(6):30⁃39.
|
3 |
鲁晓醒,檀为建,胡雄翼,等.高含水期原油低温集输黏壁特性实验[J].油气储运,2019,38(11):1245⁃1250.
|
4 |
杨军伟,仲家锐,贾善坡,等.含水层储气库注入阶段盖层力学完整性数值模拟分析[J].东北石油大学学报,2021,45(3):86⁃98.
|
5 |
张丽.大庆油田非金属管道应用技术现状及对策[J].油气田地面工程,2012,31(11):14⁃16.
|
6 |
Gibson A G,Linden J M,Elder D,et al.Non⁃metallic pipe systems for use in oil and gas[J].Plastics,Rubber and Composites,2011,40(10):465⁃480.
|
7 |
齐国权,李鹤林,李循迹,等.油田非金属管国内标准的发展与应用[J].油气储运,2014,33(10):1029⁃1033.
|
8 |
李远朋,范潮海,张茹.油田集输管道体系区域风险评价方法[J].东北石油大学学报,2019,43(6):118⁃124.
|
9 |
Hu X Y,Zhao X L,Ma C Y,et al.Experimental study on wall sticking occurrence temperatures of high water cut crude oil gathered and transported at normal temperatures:International petroleum and petrochemical technology conference[C].Singapore:Springer,2019.
|
10 |
孔维敏,张士英,邱振东,等.高含水油田单井降温集输试验[J].油气田地面工程,2021,40(10):17⁃22.
|
11 |
朱子涵.砂岩储层岩石表面的亲水性与CO2的影响[D].北京:中国石油大学(北京),2011.
|
12 |
Silva R,Mohamed R S,Bannwart A C.Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core⁃flow[J].Journal of Petroleum Science and Engineering,2006,51(1⁃2):17⁃25.
|
13 |
Saraji S,Goual L,Piri M.Adsorption of asphaltenes in porous media under flow conditions[J].Energy & Fuels,2010,24(11):6009⁃6017.
|
14 |
Lu H,Xu X,Xie L S,et al. Deformation and crawling of oil drop on solid substrates by shearing liquid⁃science direct[J].Chemical Engineering Science,2019,195:720⁃729.
|
15 |
田东恩.西区油田高含水期原油粘壁规律研究[J].科学技术与工程,2015,15(9):176⁃179.
|
16 |
Zheng H M,Huang Q Y,Wang C H.Wall sticking of high water⁃cut crude oil transported at temperatures below the gel point[J].Journal of Geophysics and Engineering,2015,12(6):1008⁃1014.
|
17 |
吴浩,韩善鹏,韩方勇,等.关于高含水原油集输温度的探讨[J].石油规划设计,2018,29(2):14⁃17.
|
18 |
张莹.常温输送高含水稠油粘壁机理研究[D].北京:中国石油大学(北京),2018.
|
19 |
张燕.高含水原油低温特性及集油边界条件研究[D].北京:中国石油大学(北京),2020.
|
20 |
Zhang Y,Huang Q Y,Cui Y,et al.Estimating wall sticking occurrence temperature based on adhesion force theory[J].Journal of Petroleum Science and Engineering,2020,187:106778.
|
21 |
李鸿英,贾治渊,韩善鹏,等.高含水含蜡原油的粘壁特性试验[J].油气储运,2020,39(8):898⁃906.
|
22 |
Maskari N A,Sari A,Saeedi A,et al.Influence of surface roughness on the contact angle due to calcite dissolution in an oil⁃brine⁃calcite system:A nanoscale analysis using atomic force microscopy and geochemical modeling[J].Energy & Fuels,2019,33(5):4219⁃4224.
|
23 |
Lyu Y,Huang Q Y,Li R B,et al.Effect of temperature on wall sticking of heavy oil in low⁃temperature transportation[J].Journal of Petroleum Science and Engineering,2021,206(3):108944.
|
24 |
吕杨,柴德民,李晓宇,等.界面特性与粘附对探究凝油粘壁机理的启示[J].油气储运,2021,40(12):1338⁃1348.
|
25 |
Quintella C M,Musse A,Castro M,et al.Polymeric surfaces for heavy oil pipelines to inhibit wax deposition:PP,EVA28,and HDPE[J].Energy & Fuels,2006,20(2):620⁃624.
|
26 |
Zhang X,Tian J,Wang L,et al.Wettability effect of coatings on drag reduction and paraffin deposition prevention in oil[J].Journal of Petroleum Science and Engineering,2002,36(1⁃2):87⁃95.
|
27 |
崔悦.高含水含蜡原油粘壁机理研究[D].北京:中国石油大学(北京),2020.
|
28 |
单宏宇.仿生非光滑耦合模具表面粘附性能研究[D].长春:吉林大学,2009.
|
29 |
Lu Y,Najafabadi N F,Firoozabadi A.Effect of temperature on wettability of oil/brine/rock systems[J].Energy & Fuels,2017,31(5):4989⁃4995.
|
30 |
Tan Y,Guo M.Using surface free energy method to study the cohesion and adhesion of asphalt mastic[J].Construction & Building Materials,2013,47(10):254⁃260. (编辑 王戬丽)
|