1 |
Radisavljevic B, Radenovic A, Brivio J, et al. Single⁃layer MoS2 transistors[J], Nat. Nanotechnol, 2011, 6(3):147⁃150.
|
2 |
Lu A Y, Zhu H, Xiao J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744⁃749.
|
3 |
Zhang J,Jia S,Kholmanov I,et al.Janus monolayer transition⁃metal dichalcogenides[J].ACS Nano,2017,11(8):8192⁃8198.
|
4 |
Lin Y C, Liu C, Yu Y, et al. Low energy implantation into transition⁃metal dichalcogenide monolayers to form Janus structures[J]. ACS Nano, 2020, 14(4): 3896⁃3906.
|
5 |
Yang Y, Zhang Y, Ye H, et al. Structural and electronic properties of 2H phase Janus transition metal dichalcogenide bilayers[J]. Superlattices and Microstructures, 2019, 131: 8⁃14.
|
6 |
Tao W L, Lan J Q, Hu C E, et al. Thermoelectric properties of Janus MXY (M= Pd, Pt; X, Y= S, Se, Te) transition⁃metal dichalcogenide monolayers from first principles[J]. Journal of Applied Physics, 2020, 127(3): 035101.
|
7 |
Wang J, Shu H, Zhao T, et al. Intriguing electronic and optical properties of two⁃dimensional Janus transition metal dichalcogenides[J]. Physical Chemistry Chemical Physics, 2018, 20(27): 18571⁃18578.
|
8 |
Chaney G,Ibrahim A,Ersan F, et al.Comprehensive study of lithium adsorption and diffusion on janus Mo/WXY (X, Y=S,Se, Te) using first⁃principles and machine learning approaches[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36388⁃36406.
|
9 |
Zhang K, Guo Y, Larson D T, et al. Spectroscopic signatures of interlayer coupling in janus MoSSe/MoS2 heterostructures[J].ACS Nano, 2021, 15(9): 14394⁃14403.
|
10 |
Petrić M M, Kremser M, Barbone M, et al. Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe[J]. Physical Review B, 2021, 103(3): 035414.
|
11 |
郭怀红, 赵波. 拉曼光谱探究二维原子晶体结构和物性的研究进展[J]. 辽宁石油化工大学学报, 2018, 38(6): 1⁃9.
|
12 |
Lin M L, Tan P H. Ultralow⁃frequency Raman spectroscopy of two⁃dimensional materials[M].Singapore:Springer, 2019: 203⁃230.
|
13 |
Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: A modular and open⁃source software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502.
|
14 |
Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual⁃space gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998, 58(7):3641⁃3662.
|
15 |
Liu H L, Guo H, Yang T, et al. Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering[J]. Physical Chemistry Chemical Physics, 2015, 17(22): 14561⁃14568.
|
16 |
Liu H L, Yang T, Tatsumi Y, et al. Deep⁃ultraviolet Raman scattering spectroscopy of monolayer WS2[J]. Scientific reports, 2018, 8(1): 1⁃10.
|
17 |
Guo H, Yang T, Yamamoto M, et al. Double resonance Raman modes in monolayer and few⁃layer MoTe2[J]. Physical Review B, 2015, 91(20): 205415.
|
18 |
Seixas L, Rodin A S, Carvalho A, et al. Multiferroic two⁃dimensional materials[J]. Physical Review Letters, 2016, 116(20): 206803.
|
19 |
Dong B, Wang Z, Hung N T, et al. New two⁃dimensional phase of tin chalcogenides: Candidates for high⁃performance thermoelectric materials[J]. Physical Review Materials, 2019, 3(1): 013405.
|
20 |
Saito R, Jorio A, Souza Filho A G, et al. Probing phonon dispersion relations of graphite by double resonance Raman scattering[J]. Physical Review Letters, 2001, 88(2): 027401.
|
21 |
Birman J L. Space group selection rules: Diamond and zinc blende[J]. Physical Review, 1962, 127(4): 1093.
|
22 |
Aroyo M I, Kirov A, Capillas C, et al. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups[J]. Acta Crystallographica Section A: Foundations of Crystallography, 2006, 62(2): 115⁃128.
|