Journal of Liaoning Petrochemical University

Journal of Liaoning Petrochemical University ›› 2015, Vol. 35 ›› Issue (3): 10-14,19.DOI: 10.3696/j.issn.1672-6952.2015.03.003

Previous Articles     Next Articles

Quantitative Analysis of DoubleComponent Oxygen  Compound by Infrared Spectroscopy

Zhang Xiaotong1.2, Yao Yue1, Wang Fang1, Sun Zhaolin1, Song Lijuan1, Sun Ting2   

  1. (1.Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Shihua University,  Fushun Liaoning 113001, China;2.College of Sciences,Northeastern University, Shenyang Liaoning 110004, China)
  • Published:2015-06-25 Online:2015-06-18

红外光谱法用于双组分含氧化合物的定量分析研究

张晓彤1, 2,姚 岳1,王 芳1,孙兆林1,宋丽娟1,孙 挺2   

  1.     
    ( 1. 辽宁石油化工大学辽宁省石油化工催化科学与技术重点实验室, 辽宁抚顺1 1 3 0 0 1; 2. 东北大学理学院, 辽宁沈阳1 1 0 0 0 4)
  • 通讯作者: 通信联系人: 宋丽娟( 1 9 6 2 - ) , 女, 博士, 教授, 博士生导师, 从事新型催化材料及清洁油品生产新工艺研发; E - m a i l : l s o n g 5 6@2 6 3. n e t 。
  • 作者简介:张晓彤( 1 9 7 0 - ) , 男, 博士, 教授, 从事高等仪器分析与计量化学方向研究; E - m a i l : 1 3 8 4 1 3 5 9 9 5 8@1 6 3. c o m。
  • 基金资助:
    国家自然科学基金资助项目( 2 1 3 7 6 1 1 4) ; 辽宁省高等学校科学研究一般项目( L 2 0 1 4 1 5 8) 。

Abstract: A quantitative analysis model for the determination of the oxide concentration in a doublecomponent containing model oil is established based on the infrared spectroscopy data for cyclohexanone and cyclohexanol components in model oil, the regression of prominent component, and the regression of back propagation neural algorithm and support vector machine. The infrared spectroscopy data were compressed by principal component analysis and used as input information to develop models. The three quantitative models can predict the respective oxide contents, with the predictive ability of support vector machine model superior to the other two models, showing a good stability of support vector machine model. Comparing with traditional methods, the established model provides a simple, fast, nodamage, costeffective and green determination method.

Key words: Infrared spectroscopy, Oxygen compound, Prominent component regression, Back propagation network, Support vector machine for regression

摘要: 摘 要:  采用主成分回归方法、 反向传播人工神经网络方法和支持向量机回归方法, 结合含有环己酮和环己
醇双组分的模拟油的红外光谱数据, 建立预测模拟油中双组分含氧化合物浓度的定量校正模型。通过主成分分析
法压缩红外光谱数据, 将主成分作为模型的输入信息。结果表明, 三种方法建立的定量校正模型均可用于预测双组
分含氧化合物的浓度。支持向量机回归模型的预测结果好于其他两种模型, 具有较强的稳定性和良好的预测能力。
对于含氧化合物浓度的测定, 红外光谱法具有操作简单、 测量快速、 无损价廉且绿色的优点。

关键词: 红外光谱, 含氧化合物, 主成分回归, B P网络, 支持向量机回归

Cite this article

Zhang Xiaotong, Yao Yue, Wang Fang, Sun Zhaolin, Song Lijuan, Sun Ting. Quantitative Analysis of DoubleComponent Oxygen  Compound by Infrared Spectroscopy[J]. Journal of Liaoning Petrochemical University, 2015, 35(3): 10-14,19.

张晓彤,姚 岳,王 芳,孙兆林,宋丽娟,孙 挺. 红外光谱法用于双组分含氧化合物的定量分析研究[J]. 辽宁石油化工大学学报, 2015, 35(3): 10-14,19.