针对在漏磁检测中石油和天然气管道中的小缺陷样本稀缺及检测精度不佳的问题,提出了基于浅层特征抑制的油气管道小缺陷检测网络。首先,利用对抗生成网络并融入先验知识,以生成高质量小缺陷样本。然后,在特征提取过程中引入缺陷特征抑制模块,在浅层金字塔特征中抑制大缺陷语义从而增强小缺陷特征。最后,多尺度注意力变换器(Transformer)充分利用特征图像的局部细节和全局信息提高管道缺陷检测准确率。实验结果表明,该模型检测的准确率为95.1%,比现有的Faster R?CNN等方法的平均值高7.8%。