辽宁石油化工大学学报 ›› 2008, Vol. 28 ›› Issue (4): 82-85.

• 计算机与自动化 • 上一篇    下一篇

一种基于支持向量机的虹膜识别算法

王维民   

  1. 辽宁石油化工大学计算机与通信工程学院,辽宁抚顺113001
  • 收稿日期:2008-03-15 出版日期:2008-12-20 发布日期:2017-07-25

Iris Recognition Algorithm Based on SVM

WANG Wei-min   

  1. School of Computer and Communication Engineering, Liaoning University of Petroleum & Chemical Technology, Fushun Liaoning 113001,P.R.China
  • Received:2008-03-15 Published:2008-12-20 Online:2017-07-25

摘要: 提出了一种基于极值加权平均分数维特征提取和支持向量机分类器识别的虹膜识别方法。利用形态学和圆形边缘检测算子定位虹膜,并将虹膜纹理映射到极坐标空间。定义了一种新的图像分数维——极值加权平均分数维,用于提取虹膜特征。最后,利用支持向量机分类器对虹膜特征矩阵进行匹配识别。试验表明,基于极值加权平均分数维特征提取和支持向量机分类器识别的虹膜识别系统识别率高,速度快。

关键词: 虹膜识别, 支持向量机, 分数维

Abstract: Based on fractal dimension in feature extraction and support vector machine (SVM) classification, an iris recognition algorithm was presented. The iris was located by a circle detector according to mathematical morphology and mapped to polar coordinates space. Then a new definition of fractal dimension-extreme value weighted mean fractal dimension was given, and the feature of iris was extracted. At last, a SVM classifier was used in matching stage. The experimental results show that the system based on extreme value weighted mean fractal dimension in feature extraction and SVM classification is precise and rapid.

Key words: Iris recognition, SVM, Fractal dimension

引用本文

王维民. 一种基于支持向量机的虹膜识别算法[J]. 辽宁石油化工大学学报, 2008, 28(4): 82-85.

WANG Wei-min. Iris Recognition Algorithm Based on SVM[J]. Journal of Liaoning Petrochemical University, 2008, 28(4): 82-85.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2008/V28/I4/82