辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2017, Vol. 37 ›› Issue (2): 31-36.DOI: 10.3969/j.issn.1672-6952.2017.02.007

• 油气储运 • 上一篇    下一篇

基于SVM-GA模型的城市天然气长期负荷预测

董明亮,刘培胜,潘 振,文江波,李秉繁   

  1. 辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113001
  • 收稿日期:2016-09-26 修回日期:2016-11-05 出版日期:2017-04-20 发布日期:2017-05-04
  • 通讯作者: 通信联系人:潘振(1981-),男,博士,副教授,从事城市燃气负荷预测研究;E-mail:28335719@qq.com。
  • 作者简介:董明亮(1990-),男,硕士研究生,从事城市燃气负荷预测研究;E-mail:463925702@qq.com。
  • 基金资助:
    辽宁省高等学校优秀人才支持计划项目(LJQ2014038)。

A Forecasting Model  of Natural Gas Long-Term Load Based on SVM-GA

Dong Mingliang,Liu Peisheng,Pan Zhen,Wen Jiangbo,Li Bingfan   

  1. College of Petroleum  Engineering,Liaoning Shihua University,Fushun Liaoning 113001,China
  • Received:2016-09-26 Revised:2016-11-05 Published:2017-04-20 Online:2017-05-04

摘要:         天然气长期负荷预测能够解决城市燃气供需不平衡的问题,为城市燃气公司的管理运行提供帮助。为了提高天然气长期负荷的预测精度,提出了基于SVM-GA(SupportVectorMachines-GeneticAlgorithm)的天然气长期负荷预测模型。分析确定影响天然气用气量的相关因素,应用遗传算法和交叉验证方法分别对支持向量机模型的惩罚因子c 及核函数参数g 进行优化,以期提高支持向量机模型的预测精度,将优化后的参数输入支持向量机模型中,进行天然气长期负荷预测。以某省实际的样本数据为例,将SVM-GA模型的预测结果与SVM 和交叉验证法结合模型及BP(BackPropagation)神经网络模型的预测结果进行比较分析。结果表明,SVM-GA 预测模型分别比SVM 和交叉验证法结合预测模型和BP神经网络模型在衡量预测精度的相对均方误差、归一化均方误差、归一化绝对平方误差、归一化均方根误差、最大绝对误差五个指标分别高0.58%、3.98%、2.99%、4.58%、8.64%和6.13%、26.28%、19.71%、21.09%、31.48%。因此支持向量机与遗传算法相结合的模型能够较准确地预测天然气长期负荷。

关键词: 天然气长期负荷,    , SVM,    , BP神经网络,    ,  遗传算法,    ,  交叉验证法,    ,  预测,    ,  精度

Abstract:

      Long-term natural gas load forecasting can solve the problem of the imbalance between supply and demand of city gas and provide assistance for the city gas company's management and running. In order to improve the accuracy of predicting the longterm natural gas loada forecasting model of natural gas longterm load was built based on SVM-GA(Support Vector MachinesGenetic Algorithm). The relevant factors influencing natural gas consumption was analyzed and determined. In order to improve prediction accuracy the penalty factor c and the kernel parameter g of support vector machines were optimized using genetic algorithm and cross validation methods. Optimized parameters were inputted support vector machines model and long-term natural gas load forecasting was made. In a case study from a certain citya comparative analysis was made of the forecasting results among SVM-GASVM and crossvalidation method combined prediction model and BP(Back Propagation) neural networks. The forecasting model based on SVM-GA was validated with a high prediction accuracy and the resulted relative mean square errornormalization mean square errornormalization absolute square errornormalization rootmean square error maximum absolute error resulted from the SVM-GA were lower than those from SVM and crossvalidation method combined prediction model or BP neural networks by 0.58%3.98%2.99%4.58%8.64% and 6.13%26.28%19.71%21.09%31.48%. Thereforethe support vector machine and genetic algorithm combined model can accurately predict the long-term natural gas load.

Key words: Natural gas long-term load,    , SVM,    , BP neural networks,    , Genetic algorithm,    , Cross validation,    , Forecast,    , Accuracy

引用本文

董明亮,刘培胜,潘 振,文江波,李秉繁. 基于SVM-GA模型的城市天然气长期负荷预测[J]. 辽宁石油化工大学学报, 2017, 37(2): 31-36.

Dong Mingliang,Liu Peisheng,Pan Zhen,Wen Jiangbo,Li Bingfan. A Forecasting Model  of Natural Gas Long-Term Load Based on SVM-GA[J]. Journal of Liaoning Petrochemical University, 2017, 37(2): 31-36.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3969/j.issn.1672-6952.2017.02.007

               https://journal.lnpu.edu.cn/CN/Y2017/V37/I2/31