辽宁石油化工大学学报 ›› 2012, Vol. 32 ›› Issue (4): 76-79.DOI: 10.3696/j.issn.1672-6952.2012.04.020

• 计算机与自动化 • 上一篇    下一篇

一种改进的双支持向量机

丁胜锋   

  1. 辽宁石油化工大学经济管理学院,辽宁抚顺113001
  • 收稿日期:2012-06-09 出版日期:2012-12-20 发布日期:2017-07-06
  • 作者简介:丁胜锋(1981-),男,湖北蕲春县,讲师,在读博士。

 
An Improved Twin Support Vector Machine

 

DING Sheng-feng
  

  1. School of Economics and Management,Liaoning Shihua University,Fushun Liaoning 113001,P.R.China
  • Received:2012-06-09 Published:2012-12-20 Online:2017-07-06

摘要:      双支持向量机是近年提出的一种新的支持向量机。在处理模式分类问题时,双支持向量机速度远远超过传统支持向量机,而且显示出较好的推广能力。但双支持向量机没有考虑不同输入样本点可能会对分类超平面的形成产生不同影响,在某些实际问题中具有局限性。为了克服这个缺点,提出了一种基于模糊隶属度的双支持向量机。该算法设计了一种基于距离的模糊隶属度函数,给不同的训练样本赋予不同的模糊隶属度,构建两个最优非平行超平面,最终实现二值分类。实验结果表明,这种改进双支持向量机的分类性能优于传统的双支持向量机。

关键词: 双支持向量机,  模糊隶属度,  模式分类

Abstract:  

As a new version of support vector machine(SVM),twin support vector machine(TWSVM) was proposed recently. TWSVM is not only faster than a conventional SVM, but shows good generalization for pattern classification. But the different effects of the different training samples on the classification hyperplanes are ignored in TWSVM, and the limitation is existed for some actual applications. Therefore, a twin support vector machine based on fuzzy membership was presented. A fuzzy membership function based on distance was designed, and TWSVM was modified by applying the fuzzy membership to every training sample, finally two optimal nonparallel hyperplanes were builded to achieve classification. The experiment results indicate that the classification performance of the algorithm is more superiorer than a traditional TWSVM.

Key words:  

引用本文

丁胜锋. 一种改进的双支持向量机[J]. 辽宁石油化工大学学报, 2012, 32(4): 76-79.

DING Sheng-feng.  

An Improved Twin Support Vector Machine
[J]. Journal of Liaoning Petrochemical University, 2012, 32(4): 76-79.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3696/j.issn.1672-6952.2012.04.020

               https://journal.lnpu.edu.cn/CN/Y2012/V32/I4/76