辽宁石油化工大学学报 ›› 2012, Vol. 32 ›› Issue (3): 88-90.

• 数学与经济管理 • 上一篇    下一篇

一类非线性二阶常微分方程边值问题的解析解

刘国志刘倩囡   

  1. 1.辽宁石油化工大学理学院,辽宁抚顺113001;
    2.华北电力大学(北京)能源动力与机械工程学院,北京102206
  • 收稿日期:2011-12-21 出版日期:2012-09-20 发布日期:2017-07-06
  • 作者简介:刘国志(1962-),男,吉林长春市,教授,硕士。

AnalyticalSolutionofBoundaryValueProblemsforaClassof SecondOrderNonlinearOrdinaryDifferentialEqations

<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>L<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>G<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>o<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>-<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>z<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>h<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>1<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>,<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>L<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>u<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>Q<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>a<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>-<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>a<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>2<a href="https://journal.lnpu.edu.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>   

  1. 1. C olle g e   o f  S ciences L iaonin g  S hihua  U niversit y F ushun  L iaonin g1 13001 P. R. C hina 2. S chool   o f
    E ner gy  P ower   a nd  M echanical   E n g ineerin g N orth  C hina  E lectric  P ower  U niversit y B ei j in g1 02206 P. R. C hina
    R eceived2 1   D ecember   2 011 r evised2 3   F ebruar y2 012 a cce p ted2 5   March2 012
  • Received:2011-12-21 Published:2012-09-20 Online:2017-07-06

摘要:         在计算胶粒间双电层相互作用能时,需要计算胶粒间的电位分布,而两个胶粒间的电位分布满足Poisson-Boltzmann方程dy/dt=sinhy,这是一个二阶非线性常微分方程,无法求出其解析解。但是当y>>1时,sinhy≈e/2,故求解Poisson-Boltzmann方程近似解问题转化为求dy/dt=e/2解析解。因此,寻找常微分方程解解的问题是工程实际的需要。通过对二阶非线性常微分方程边值问题的研究,给出了一类二阶非线性常微分方程dy/dt=e/a在等边值条件下的解析解表达式。

关键词:  微分方程,  Poisson-Boltzmann方程,  解析解

Abstract: Ascalculatingthedoublelayerinteraction betweencolloidalparticles,itisnecessarytocalculatepotential distributionbetweencolloidalparticles.Then potentialdistribution betweentwocolloidalparticles meetthe Poisson- Boltzmannequationd2y/dt2=sinhy.Duetoitsnonlinearnature,noanalyticalsolutionoftheequationhasbeenfound,however wheny≫1,sinhy ≈ey/2,theapproximatesolutionofPoisson-Boltzmannequationistransformedintosolvinganalytical solutionofd2y/dt2 =ey/2.Hence,findinganalyticalsolutionofnonlinearordinarydifferentialequationistheneedof engineering.Thereforethroughresearchingboundaryvalueproblemofsecondordernonlinearordinarydifferentialequation, analyticalsolutionofaclassofsecondordernonlinearordinarydifferentialequationd2y/dt2 =ey/a wasobtainedunderthe conditionsofequalboundaryvalue.

Key words:  Poisson-Boltzmannequation , Analysissolution

引用本文

刘国志,刘倩囡. 一类非线性二阶常微分方程边值问题的解析解[J]. 辽宁石油化工大学学报, 2012, 32(3): 88-90.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2012/V32/I3/88