辽宁石油化工大学学报 ›› 2026, Vol. 46 ›› Issue (1): 54-63.DOI: 10.12422/j.issn.1672-6952.2026.01.007

• 机械工程 • 上一篇    下一篇

基于有限元法的减压阀金属膜片性能分析与参数研究

杨清艳(), 陆文韬   

  1. 安徽建筑大学 机械与电气工程学院,安徽 合肥 230601
  • 收稿日期:2025-07-07 修回日期:2025-08-12 出版日期:2026-02-25 发布日期:2026-02-05
  • 作者简介:杨清艳(1987—),女,博士,讲师,从事机械零部件设计及优化方面的研究;E⁃mail:yangqingyan@ahjzu.edu.cn
  • 基金资助:
    安徽省高校基本科研项目(KJ2310523)

Performance Analysis and Parametric Study of a Pressure⁃Reducing Valve's Metal Diaphragm Using the Finite Element Method

Qingyan YANG(), Wentao LU   

  1. School of Mechanical and Electrical Engineering,Anhui Jianzhu University,Hefei Anhui 230601,China
  • Received:2025-07-07 Revised:2025-08-12 Published:2026-02-25 Online:2026-02-05

摘要:

金属膜片作为一种关键功能材料,广泛应用于航空航天、微电子、化工等领域。在膜片式减压阀中,膜片作为核心敏感元件,其力学性能直接影响阀门的压力调节精度、稳定性和使用寿命。系统研究了膜片的关键几何参数及材料属性对其在典型工况下力学性能的影响规律。建立膜片的数学模型,分析了膜片在平衡位置的受力情况,施加载荷和约束条件,利用波纹膜片大挠度变形理论验证了载荷与挠度的关系;采用SolidWorks软件建立膜片的精确三维参数化模型,并通过有限元分析法对膜片的性能进行了研究;利用ANSYS软件,对膜片的几何结构、参数(宽度、高度、厚度)和材料属性进行了静态结构仿真分析。结果表明,圆弧大波纹的几何结构优于正弦波纹;增大外圈波纹宽度,膜片的变形量和应力应变随之增加,灵敏度更优;增大波纹高度,膜片的弹性特性呈先减后增的趋势;膜片的厚度越小,其弹性特性越好;高弹性模量的材料会使膜片的变形减小,应力增大。研究结果可为膜片式减压阀金属膜片的结构优化设计和高性能材料选型提供重要的理论依据和设计指导。

关键词: 减压阀, 圆弧大波纹膜片, 有限元分析, 大挠度变形理论

Abstract:

Metal diaphragms serve as key functional materials widely used in aerospace, microelectronics, chemical engineering, and other fields. As the core sensitive element in diaphragm pressure?reducing valves, their mechanical properties directly determine the valve's pressure regulating precision, stability, and service life. This paper systematically investigates the influence of key geometric parameters of the diaphragm and material properties on its mechanical performance under typical operating conditions. A mathematical model was established to analyze force distribution at the equilibrium position, where loads and constraints were applied, followed by the application of loads and constraints were applied, and the relationship between load and deflection was verified using the large deflection theory of corrugated diaphragms. A precise 3D parametric model of the diaphragm was built using SolidWorks software. The study employed the Finite Element Analysis (FEA) method, utilizing ANSYS software to conduct static structural simulation analysis on the diaphragm's geometric structure, parameters (width, height, thickness), and material properties. The results show that: the geometric structure of large arc corrugations is superior to sinusoidal corrugations; increasing the width of the outer corrugations increases the deformation, stress, and strain of the diaphragm, thus enhancing its sensitivity; increasing the corrugation height causes the diaphragm's elastic characteristics to first decrease and then increase; smaller diaphragm thickness results in better elastic characteristics; the elastic modulus of the diaphragm material is the dominant factor affecting its stiffness and deformation response?higher elastic modulus reduces deformation but increases stress, while materials with lower elastic modulus exhibit the opposite effect. Material selection requires balancing sensitivity, strength, and service life requirements. This research reveals the influence of the diaphragm's geometric structure, parameters, and material properties on its mechanical performance, providing an important theoretical basis and design guidance for the structural optimization design and high?performance material selection of diaphragms in diaphragm pressure?reducing valves.

Key words: Pressure?reducing valve, Large arc corrugated diaphragm, Finite element analysis, Large deflection deformation theory

中图分类号: 

引用本文

杨清艳, 陆文韬. 基于有限元法的减压阀金属膜片性能分析与参数研究[J]. 辽宁石油化工大学学报, 2026, 46(1): 54-63.

Qingyan YANG, Wentao LU. Performance Analysis and Parametric Study of a Pressure⁃Reducing Valve's Metal Diaphragm Using the Finite Element Method[J]. Journal of Liaoning Petrochemical University, 2026, 46(1): 54-63.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.12422/j.issn.1672-6952.2026.01.007

               https://journal.lnpu.edu.cn/CN/Y2026/V46/I1/54