辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2020, Vol. 40 ›› Issue (2): 91-96.DOI: 10.3969/j.issn.1672-6952.2020.02.015

• 信息与控制工程 • 上一篇    

DE算法改进的炼焦能耗RBF预测模型

陶文华陈娇桂运金孔平平   

  1. 辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
  • 收稿日期:2019-03-27 修回日期:2019-04-23 出版日期:2020-04-28 发布日期:2020-05-22
  • 作者简介:陶文华(1972-),女,硕士,教授,从事工业过程优化及控制研究;E-mail:taowenhua@lnpu.edu.cn。
  • 基金资助:
    国家自然科学基金面上项目(61673199);国家自然科学基金青年基金项目(61703191)。

Coking Energy Consumption RBF Prediction Model Improved by Differential Evolution Algorithm

Tao WenhuaChen JiaoGui YunjinKong Pingping   

  1. School of Information and Control Engineering, Liaoning Shihua University, Funshun Liaoning 113001,China
  • Received:2019-03-27 Revised:2019-04-23 Published:2020-04-28 Online:2020-05-22

摘要: 针对炼焦能耗计算繁琐、影响因素众多的问题,以目标火道温度、烟道吸力、水分、挥发分和炼焦时间为输入变量,以炼焦能耗为输出变量,提出基于差分进化算法改进的RBF预测模型。由于RBF网络存在学习能力差、收敛速度慢等多个缺点,针对性地改进了差分进化算法优化的能耗预测模型。利用具有强大全局搜索能力的差分进化算法,选择RBF网络中基函数的中心值、宽度和输出权重的计算最优值,以此作为RBF神经网络的中心值、宽度和输出权重。结果表明,改进后的RBF预测模型具有较高的精度、稳定性和训练速度,对降低炼焦能耗、提高焦炭产量和提高企业经济效益具有重要意义。

关键词: RBF神经网络,  差分进化算法,  炼焦能耗,  预测模型

Abstract: In this paper, an improved RBF prediction model was proposed to solve the problems of cumbersome calculation and many influencing factors in the process of coking energy consumption. In the energy consumption prediction model, target flue temperature, flue suction, moisture, volatile matter and coking time were taken as input variables, and coking energy consumption as output variables. Because RBF network had many shortcomings such as poor learning ability and slow convergence speed, an energy consumption prediction model based on improved differential evolution algorithm was proposed. By using the differential evolution algorithm with strong global search ability, the optimal values of the center value, width and output weight of the basis function in RBF network were selected as the center value, width and output weight of RBF neural network. The results show that the improved RBF prediction has high accuracy, stability and training speed, which is of great significance for reducing coking energy consumption, increasing coke output and improving economic benefits of enterprises.

Key words: RBF neural network, Differential evolutionary algorithm, Coking energy consumption, Prediction model

引用本文

陶文华, 陈娇, 桂运金, 孔平平. DE算法改进的炼焦能耗RBF预测模型[J]. 辽宁石油化工大学学报, 2020, 40(2): 91-96.

Tao Wenhua, Chen Jiao, Gui Yunjin, Kong Pingping. Coking Energy Consumption RBF Prediction Model Improved by Differential Evolution Algorithm[J]. Journal of Liaoning Petrochemical University, 2020, 40(2): 91-96.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3969/j.issn.1672-6952.2020.02.015

               https://journal.lnpu.edu.cn/CN/Y2020/V40/I2/91