辽宁石油化工大学学报 ›› 2018, Vol. 38 ›› Issue (05): 1-08.DOI: 10.3969/j.issn.1672-6952.2018.05.001
电渣重熔过程伴随着电磁、流动、传质和传热等一系列复杂的宏观传输现象,同时伴随金属熔体形核和生长等一系列微观现象,宏微观现象之间彼此相互影响、相互制约,决定着最终重熔铸锭质量。在过去几十年里, 研究者已经建立了电磁场、流场、温度场和溶质场宏观传输数学模型,揭示了电渣重熔体系内电流强度、磁感强度、焦耳热、电磁力、温度和溶质元素分布,以及渣金两相流动。最近,研究者建立了电渣重熔铸锭凝固微观组织数学模型,揭示了电渣重熔过程铸锭凝固组织演变规律和金属熔池形貌,以及重熔工艺对铸锭凝固组织的影响规律。然而,要全面揭示电渣重熔过程复杂的宏微观传输现象,还需要在电渣重熔过程熔渣内带电离子迁徙行为、电化学反应、枝晶间溶质扩散与流动、铸锭凝固收缩等方面进一步深入研究。
Electroslag remelting(ESR) process is accompanied by a series of complex macroscopic transportation phenomena such as electromagnetism, flow, mass transfer and heat transfer, and a series of microscopic transportation phenomena such as the nucleation and growth of metal melt. Macro/micro-scopic transportation phenomena interact with each other and restrict each other, which determines the quality of the final remelted ingot. In the past few decades, many researchers have established the macroscopic mathematical models for macroscopic transmission of the electromagnetic field, flow field, temperature field and solute field, revealing the current density, magnetic induction intensity, Joule heat, electromagnetic force, temperature and solute element distribution, and two-phase flow of molten slag and melt in ESR system. Recently, the researchers have established a microscopic mathematical model for solidification microstructure of electroslag remelting ingots and revealed the evolution law of solidification microstructure, and liquid pool morphology and the influence of remelting process on solidification microstructure of ingot. However, in order to fully reveal the complex macro/microscopic transportation phenomena in ESR process, it is necessary to further study the charged ion migration behavior in the molten slag pool, the electrochemical reaction, the interdendritic solute diffusion and flow, the solidification and shrinkage of the ingot, and so on.
摘要: 电渣重熔过程伴随着电磁、流动、传质和传热等一系列复杂的宏观传输现象,同时伴随金属熔体形核和生长等一系列微观现象,宏微观现象之间彼此相互影响、相互制约,决定着最终重熔铸锭质量。在过去几十年里,研究者已经建立了电磁场、流场、温度场和溶质场宏观传输数学模型,揭示了电渣重熔体系内电流强度、磁感强度、焦耳热、电磁力、温度和溶质元素分布,以及渣金两相流动。最近,研究者建立了电渣重熔铸锭凝固微观组织数学模型,揭示了电渣重熔过程铸锭凝固组织演变规律和金属熔池形貌,以及重熔工艺对铸锭凝固组织的影响规律。然而,要全面揭示电渣重熔过程复杂的宏微观传输现象,还需要在电渣重熔过程熔渣内带电离子迁徙行为、电化学反应、枝晶间溶质扩散与流动、铸锭凝固收缩等方面进一步深入研究。
王晓花,康晓雪,马 骏. 电渣重熔宏微观多尺度数值研究进展[J]. 辽宁石油化工大学学报, 2018, 38(05): 1-08.
WangXiaohua,KangXiaoxue,MaJun. Research Progress in Macro/Micro-Scopic Multi-Scale Numerical Simulation of Electroslag Remelting[J]. Journal of Liaoning Petrochemical University, 2018, 38(05): 1-08.