石油化工高等学校学报

石油化工高等学校学报 ›› 2024, Vol. 37 ›› Issue (3): 25-33.DOI: 10.12422/j.issn.1006-396X.2024.03.004

• 石油工程 • 上一篇    下一篇

微气泡型管式气液接触器的气液两相流动特性研究

杨寒月1,2(), 孔令真1,2, 陈家庆1,2(), 孙欢1,2, 宋家恺1,2, 孔标1,2, 丁国栋1,2   

  1. 1.北京石油化工学院 环境工程系,北京 102617
    2.深水油气管线关键技术与装备北京市重点实验室,北京 102617
  • 收稿日期:2023-05-26 修回日期:2023-06-27 出版日期:2024-06-25 发布日期:2024-06-18
  • 通讯作者: 陈家庆
  • 作者简介:杨寒月(1996-),女,硕士研究生,从事环保多相流高效分离技术与设备方面的研究;E-mail:271336848@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目(21808015);北京市教委科技计划一般项目(KM202210017009);中国石油化工股份有限公司科研项目(322040)

Gas-Liquid Two-Phase Flow Characteristic Research on Micro Bubble Tubular Gas-Liquid Contactor

Hanyue YANG1,2(), Lingzhen KONG1,2, Jiaqing CHEN1,2(), Huan SUN1,2, Jiakai SONG1,2, Biao KONG1,2, Guodong DING1,2   

  1. 1.Department of Environmental Engineering,Beijing Institute of Petrochemical Technology,Beijing 102617,China
    2.Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deep Water Oil & Gas Development,Beijing 102617,China
  • Received:2023-05-26 Revised:2023-06-27 Published:2024-06-25 Online:2024-06-18
  • Contact: Jiaqing CHEN

摘要:

与常用气液鼓泡塔相比,管式气液接触器通过在管道空间内产生的均匀气泡状高分散体系强化气液传质过程,具有含气率高、能耗低和维护简单等优点。自主设计研制了带文丘里射流气泡发生器的微气泡型管式气液接触器;利用计算流体动力学(CFD)数值模拟和室内实验相结合的方法,对其所涉及的成泡机理、气泡粒径分布特性等进行了系统研究。结果表明,采用体积分数法(VOF)模型耦合RNG k-ε湍流模型可模拟分析微气泡型管式气液接触器内成泡机理和气泡形态;在文丘里射流气泡发生器的扩张段内可将大气泡剪切破碎成微气泡,且微气泡均匀稳定;气泡粒径随液体流量的增大而减小,在液体流量为14.0 L/min、气体流量为最大自然吸气量、柱体长度为800 mm时气泡粒径最小(76.5 μm);气泡粒径随气体流量的增大而增大,在气体流量为1.5 L/min、液体流量为8.0 L/min、柱体长度为800 mm时气泡粒径最小(86.7 μm);气泡粒径随柱体长度的增大呈现先降低后基本不变的趋势,当柱体长度大于800 mm时,其对气泡粒径的影响较小。

关键词: 气液接触器, 射流气泡发生器, 微气泡, CFD数值模拟, 气泡粒径

Abstract:

Compared with the commonly used gas-liquid bubble tower, the tubular gas-liquid contactor has the advantages of high gas content rate, low energy consumption and simple maintenance to strengthen the gas-liquid mass transfer process by generating a uniform bubble-like and highly dispersed system in the pipeline space.A micro-bubble type tubular gas-liquid contactor was developed independently which utilizes the high-speed shear crushing effect of a venturi jet bubble generator to generate micro bubbles.Based on computational fluid dynamics (CFD) numerical simulation and indoor experiments,the bubble formation mechanism and bubble size distribution of the micro bubble tubular gas-liquid contactor were investigated.The results show that the VOF multiphase flow model coupled with RNG k-ε turbulence model can simulate the jet impingement process and bubble formation characteristics. In the expansion section of the venturi jet bubble generator,large bubbles are sheared and broken into micro bubbles, and the bubbles are uniform and stable. The particle size of bubbles decreases with the increase of liquid volume, and the particle size of bubbles is the smallest (76.5 μm) when the liquid volume is 14.0 L/min, the gas volume is the maximum natural suction volume, and the length of the column is 800 mm. The bubble particle size increases with the increase of gas volume, and is the smallest (86.7 μm) when the gas volume is 1.5 L/min, the liquid volume is 8.0 L/min, and the length of the column is 800 mm.As the length of column increases, the bubble size first decreases and then remains basically unchanged. When the column length is greater than 800 mm, its impact on the bubble particle size is relatively small.

Key words: Gas liquid contactor, Jet bubble generator, Micro bubble, CFD numerical simulation, Bubble size

中图分类号: 

引用本文

杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 孔标, 丁国栋. 微气泡型管式气液接触器的气液两相流动特性研究[J]. 石油化工高等学校学报, 2024, 37(3): 25-33.

Hanyue YANG, Lingzhen KONG, Jiaqing CHEN, Huan SUN, Jiakai SONG, Biao KONG, Guodong DING. Gas-Liquid Two-Phase Flow Characteristic Research on Micro Bubble Tubular Gas-Liquid Contactor[J]. Journal of Petrochemical Universities, 2024, 37(3): 25-33.

使用本文