Browse by section
    Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Adsorptive Removal of Congo Red by PVDF/MIL⁃53(Fe) Composite Membrane from Aqueous Solution
Hai XING, Xiaohua WANG, Ningning LIU
Abstract975)   HTML12)    PDF (1731KB)(219)      

Metal?organic framework material MIL?53(Fe) was added as a modifier to polyvinylidene fluoride (PVDF) casting solution, and PVDF/MIL?53(Fe) composite membrane was fabricated. The composite membranes were characterized by a series of tests, including XRD, FT?IR, SEM and TG. The composite membrane was used as an adsorbent to adsorb Congo red (CR) from aqueous solution. The effects of composite membrane dosage, initial concentration of CR solution, contact time and temperature were discussed, and the isothermal adsorption models, adsorption kinetics, and adsorption thermodynamics were also studied. The results show that the most appropriate dosage of the composite membrane is 20 mg in each experiment. The maximum theoretical adsorption capacity of CR by the composite membrane is 71.9 mg/g at 313 K. Ethanol has good desorption effect on CR adsorbed onto the composite membrane, and the composite membrane can maintain good adsorption capacity after 5 adsorption?desorption cycles. The isotherm data follows the Langmuir isotherm model and the kinetic adsorption follows the pseudo?second?order model. This adsorption process is spontaneous and endothermic, which is illustrated by the thermodynamic data.

2025, 45 (4): 19-26. DOI: 10.12422/j.issn.1672-6952.2025.04.003
An Experimental Study on the Adsorption of Benzene Utilizing CuO and Alkali⁃Modified Coconut Shell Activated Carbon
Tianqiang LIU, Weiwei JIAN, Qiuyan HAI, Hong ZHANG
Abstract862)   HTML7)    PDF (2670KB)(186)      

A novel adsorption material,KOH?C/CuO, was synthesized through the impregnation method using coconut shell activated carbon as support. The surface physical and chemical properties of the material were characterized by SEM,BET, FTIR,and XPS analysis. Subsequently, a benzene adsorption experiment was conducted to evaluate its performance. The influence of KOH concentration, modification time, CuO load(mass fraction), and adsorption temperature on the benzene adsorption properties was systematically investigated. Furthermore, a comprehensive evaluation of the materials' adsorption properties was carried out. The results indicated that the adsorption performance of 0.5K?C?4/CuO?3 reached its peak when the KOH concentration was 0.5 mol/L, the modification time was 4 h, the CuO load was 3%, and the temperature was maintained at 25 ℃. The adsorption capacity for benzene achieved a remarkable value of 235.3 mg/g, surpassing unmodified material by 118.88 mg/g.

2025, 45 (4): 27-35. DOI: 10.12422/j.issn.1672-6952.2025.04.004
Influencing Factors of Intrinsic Structure and Sodium Storage Properties of Carbonized Petroleum Coke
Jingwen QU, Haile CAI, Yongyi SONG, Shudong ZHANG, Dong YAN, Rui MA
Abstract1231)   HTML9)    PDF (1970KB)(202)      

The anode materials play a crucial role in the components of sodium?ion batteries. Petroleum coke serves as an important precursor for the preparation of carbon anode for sodium?ion batteries. In this study, the effects of carbonization temperature and sulfur content on the structure of petroleum coke anode were characterized by XRD and Raman spectroscopy, and the changes of sodium storage properties for different structured anodes were analyzed. The results show that the anode has a balanced defect density and interlayer spacing and excellent conductivity, which exhibits better electrochemical performance at 1 000 ℃. The discharge capacity at a current density of 50 mA/g is 434 mA?h/g. The presence of sulfur inhibits the rearrangement and growth of carbon layer. With the increase of sulfur content of petroleum coke, the anode material exhibits higher sodium storage capacity and better cycle life and rate performance, while the initial coulomb efficiency decreases from 65% to 54%, posing significant challenges for future research.

2025, 45 (3): 34-40. DOI: 10.12422/j.issn.1672-6952.2025.03.005
Luminescence Enhancement Mechanism of Near⁃Infrared Persistent Luminescence of La 3+ Doped ZGGO:Cr 3+ Nanoparticles
Zheng GONG, Yufei GONG, Zeyang JIANG, Jiawei YAN, Tianle BAI
Abstract811)   HTML5)    PDF (1693KB)(333)      

The spinel?phase Zn2Ga2.98-x Ge0.75O8:Cr0.02, La x (x=0.005,0.010,0.015,0.020,0.025) nanoparticles were synthesized by a hydrothermal method in combination with a subsequent heat treatment. With the La3+ doping concentration increasing from 0 to 0.025, the average particle size of these nanoparticls increased from 64 nm to 78 nm. Under 590 nm excitation, La3+?doped ZGGO nanoparticles exhibited stronger narrow?band NIR emission peaked at 697 nm, originating from the 2E(2G)→4A2(4F) transition of Cr3+. From the TEM and emission spectral analyses, it can be found that the increased NIR persistent luminescence is attributed to the increased particle size and the increased number of luminescent centers in a relatively strong crystal field environment. On the basis of thermoluminescence spectra and the afterglow decay curves, it can be found that La3+ doping leads to the formation of more traps related to the thermal activation process and the afterglow time exceeding 15 h.

2025, 45 (3): 41-47. DOI: 10.12422/j.issn.1672-6952.2025.03.006
Research Progress of Flexible Anion Exchange Membranes
Dan WU, Jilin WANG, Quantong CHE
Abstract1216)   HTML12)    PDF (1704KB)(617)      

Fuel cells have attracted widespread attention owing to the merits of high efficiency, high safety and wide application, etc. Therefore, fuel cells can meet the increasing requirement for clean energy in human society. Among them, anion exchange membrane fuel cells have shown broad application prospects due to the environmental friendliness, the use of non?precious metal catalysts, high safety and stability, etc. As the core component of anion exchange membrane fuel cells, anion exchange membranes can isolate the anode from the cathode and conduct hydroxide ions. Thus, the property of anion exchange membranes plays a crucial role in the performance of anion exchange membrane fuel cells. In the development process of anion exchange membranes, the low conductivity and poor hydroxide ions conductivity stability have become the key technical challenge. The development of flexible anion exchange membranes can play a positive role in promoting the further commercialization of anion exchange membrane fuel cells. Based on this, this article reviews the recent research progress on flexible anion exchange membranes from three aspects: polymer molecular chain design, structural optimization design, and new material synthesis and the composites.

2025, 45 (2): 28-37. DOI: 10.12422/j.issn.1672-6952.2025.02.004
Performance of Carrier Hollow Microsphere Silver Doped Titanium Dioxide Photocatalyst and First⁃Principles Analysis
Guodong HAO, Haoxuan SUN, Cong LI
Abstract1039)   HTML10)    PDF (2751KB)(195)      

Silver?doped powders with n(Ag+)/n(Ti4+) of 0.001、0.003、0.005、0.010、0.030 and 0.050 and ceramic hollow microspheres loaded with titanium dioxide photocatalyst were prepared by sol?gel method. The prepared catalysts were characterized by SEM, XRD and Uv?Vis DRS, and their photocatalytic properties were tested under xenon lamp light source. The doping mechanism was analyzed using first?principles calculations.The results show that the degradation rate of 0.005Ag?TiO2 powder after photocatalytic degradation of 10 mg/L methylene blue for 90 min is 76%. It is concluded that n(Ag+)/n(Ti4+)=0.005 is the best doping amount, and the degradation rate of ceramic hollow microsphere supported catalyst for 90 min is 97%. Ag doping can introduce impurity energy levels in the TiO2 system, so that the valence band electrons can reach the conduction band by hierarchical transition. The calculation results are consistent with the experimental results.

2025, 45 (2): 38-45. DOI: 10.12422/j.issn.1672-6952.2025.02.005
Mechanical Properties of Graphene/Polypropylene Composites
Zhen XUE, Jianhua QIAN, Zenghua ZHAO
Abstract1488)   HTML13)    PDF (3987KB)(375)      

In order to explore the preparation process of graphene?reinforced composite materials with industrial development prospects, graphene/polypropylene composite materials were prepared using the melt blending method, and the graphene reinforcement mechanism was analyzed through experimental and computational analysis. The results indicate that through melt blending, graphene can be uniformly dispersed in the matrix. The tensile strength of the composite material with a graphene mass fraction of 0.5% is 50.3 MPa. When the mass fraction of graphene is 4.0%, the elastic modulus and tensile strength of the composites are increase by 77.1% and 22.5%, respectively, compared to the polypropylene matrix alone. The uniform dispersion of graphene and the interaction between graphene and the polypropylene matrix enable effective stress transfer at the graphene/polypropylene interface.

2025, 45 (1): 27-32. DOI: 10.12422/j.issn.1672-6952.2025.01.004
Research Progress on Interfacial Properties of Carbon Fiber Composites Modified by Porous Materials
Bin SUN, Xiaoyu LI, Peng CHEN, Zhaolong LIAN, Caifeng WANG
Abstract1319)   HTML16)    PDF (1838KB)(857)      

Carbon fiber reinforced epoxy resin matrix composites with light weight and high strength are widely used in aerospace, transportation, energy and other fields. The composition and structure of the interface are the main factors affecting the physical and chemical properties of composites. Surface modification of carbon fiber is one of the most effective ways to enhance the interfacial properties and mechanical properties of carbon fiber composites. In recent years, it's been found that porous materials with large specific surface area and diverse structures can improve the surface energy and surface roughness of carbon fibers and improve the interfacial properties of composites. This paper briefly introduces the modification of carbon fiber with different kinds of porous materials in recent years, and summarizes the interfacial strengthening effect of carbon fiber composites, which provides reference significance for the future research of porous materials reinforced carbon fiber composites.

2025, 45 (1): 33-40. DOI: 10.12422/j.issn.1672-6952.2025.01.005
Preparation and Properties of Superhydrophobic Textiles Based on Sol⁃Gel Method
Yao XIN, Yanru HUANG
Abstract1188)   HTML8)    PDF (11358KB)(89)      

Superhydrophobic materials have become one of the research hotspots in coating directions in recent years because of their special wetting properties. Due to their anti?icing, self?cleaning, drag reduction and other characteristics, it has a wide range of application prospects. In this paper, SA?SiO2/PPSsuperhydrophobic coatings with a thickness of about 38 μm were prepared on the surface of textile cloth using nano silica (SiO2), stearic acid (SA) and polyphenylene sulfide (PPS) as raw materials by sol?gel method. The morphology was analyzed by electron scanning microscope, and the properties of the sample coating were tested. The microcosmic properties of the coating were analyzed by molecular dynamics simulation. The results show that the water contact angle of 56%SA?SiO2/30%PPS coating is 154.8°, which shows good self?cleaning, corrosion resistance and soaping resistance. Scanning electron microscopy (SEM) analysis shows that the material has micro and nano?scale rough structure. The surface of SiO2 and SA molecules was connected by hydrogen bond. The molecular dynamics simulation was consistent with the experimental data, and the corrosion resistance of the coating was verified from the microscopic point of view.

2025, 45 (1): 41-49. DOI: 10.12422/j.issn.1672-6952.2025.01.006
Preparation and Properties of Fully Biodegradable High Impact PLA/PBAT Composites
Wenxin JIANG, Guangxiang ZHANG, Ke YANG, Guiyan ZHAO
Abstract3001)   HTML16)    PDF (1717KB)(834)      

Poly (butyleneadipate-co-terephthalate) (PBAT) was used to toughen poly (lactic acid) (PLA), and a fully biodegradable high impact PLA/PBAT composite was prepared. To improve the interface compatibility between PBAT and PLA, PBAT grafted glycidyl methacrylate (GMA)(PBAT-GMA) compatibilizer was prepared by the melt grafting method. The effect of the mass fraction of compatibilizer on the properties of PLA/PBAT composite was studied. The results show that with the increase of PBAT-GMA mass fraction, the impact strength of the composites is significantly improved. When the PBAT?GMA mass fraction is 30%, the impact strength of the composites reaches 64.8 kJ/m2, and the elongation at break is 289.9%; the compatibilizing mechanism is the epoxy groups on PBAT?GMA can react with the end groups of PLA, which effectively improves the interfacial compatibility between PLA and PBAT.

2024, 44 (5): 31-37. DOI: 10.12422/j.issn.1672-6952.2024.05.005
One⁃Step Synthesis of Co@CNT/CN Nanocomposites and Their Oxygen Evolution Properties
Wencai ZHANG, Yajuan CHEN, Xiaohong SHI, Shuijiang MOU, Jing TANG, Weijun LI
Abstract2026)   HTML12)    PDF (3398KB)(419)      

Co@CNT/CN nanocomposites were obtained by a simple one-pot co?precipitation method using dicyandiamide, glucose and cobalt nitrate as raw materials. The effect of carbon nanotubes (CNTs) on the catalytic activity of Co was investigated by X-ray diffraction (XRD) and electrochemical tests. The results show that Co@CNT/CN can be obtained only at the calcination temperature of 850 ℃. And after electrochemical performance test, it was found that the electrocatalytic activity of Co@CNT/CN material with carbon nanotubes was significantly higher than that of other samples, mainly because carbon nanotubes have special conductivity, but also can promote the separation of Co elemental, reduce the agglomeration phenomenon, so as to obtain higher electrocatalytic activity.

2024, 44 (5): 38-43. DOI: 10.12422/j.issn.1672-6952.2024.05.006
Effect of Microalgae Bio⁃Oil on the Properties of Rubber/SBS Modified Asphalt
Jing LI, Zibo LIN, Fanyu MENG, Shengjing HUANG, Fuyun LI
Abstract1351)   HTML9)    PDF (2247KB)(286)      

In order to improve the compatibility between rubber powder and matrix asphalt, the rubber powder was modified by microalgae bio?oil and compounded with SBS at 5% dosage to prepare modified asphalt. The changes of rubber powder before and after modification were analyzed by infrared spectroscopy and scanning electron microscopy; the dispersion of rubber in asphalt before and after modification was analyzed by viscosity, fluorescence and phase separation tests, and the mechanical properties and aging resistance of the modified asphalt were analyzed by dynamic shear rheology analysis and multiple stress creep recovery test. It was found that the incorporation of MB increased the proportion of light components in the mixing system, promoted the solubilization development of CR in asphalt, and improved the storage stability, viscoelasticity and rutting resistance of the modified asphalt.

2024, 44 (4): 18-24. DOI: 10.12422/j.issn.1672-6952.2024.04.003
Study of the Physical Properties of 3D Carbon Ball
Zheng GONG, Jiawei YAN, Xinwen GAI, Yufei GONG, Zeyang JIANG, Tianle BAI
Abstract1719)   HTML9)    PDF (5420KB)(477)      

In this study, the optical properties of 3D carbon ball were theoretically investigated by using Density?Functional Theory (DFT) and wave function analysis. The electron?leaping mechanism in the Ultraviolet?visible (UV?vis) absorption spectrum was investigated. The electronic excitation properties of 3D carbon ball were investigated by Transition Density Matrix (TDM) and Charge Density Difference (CDD). Raman spectra were calculated and the vibrational modes of the 3D carbon ball were further explained. Meanwhile, the interaction between 3D carbon ball and the external environment was investigated using Electrostatic Potential (ESP), and the degree of electron delocalization of 3D carbon ball was investigated based on the magnetic induction current under the applied magnetic field.It is shown that the absorption spectra of three?dimensional carbon spheres are mainly in the ultraviolet region and that they have a strong electron delocalization capability. This study can provide a theoretical basis for the application of other 3D π?conjugated molecular structures in linear and nonlinear optics.

2024, 44 (4): 25-32. DOI: 10.12422/j.issn.1672-6952.2024.04.004
Synthesis and Properties of a Hybrid Material Constructed from [Mo 4O 10(CH 3O) 6] 2- and [Ag(DPPE) 2] +
Wenxuan XIE, Meng LIU, Huihao GU, Kai HAN, Kun ZHOU, Yifan TAN, Jiuyu JI, Baokuan CHEN
Abstract1367)   HTML15)    PDF (1762KB)(262)      

A novel organic-inorganic hybrid material [Ag(DPPE)2]2[Mo4O10(CH3O)6]·2CH3OH (1) has been prepared by using [Mo4O10(CH3O)6]2- in polyoxometalate (POMs) as inorganic building block, 1,2-bis(diphenylphosphine)ethane (DPPE) as an organic ligand and silver nitrate as a silver source, through the means of a combination of solvothermal and conventional synthesis and via the self-assembly process. X-ray single crystal diffraction analysis shows that compound 1 is formed by electrostatic interaction with polyanion [Mo4O10(CH3O)6]2- and [Ag(DPPE)2]+ cationic units. In addition, the structure of the compound was analyzed by X-ray powder diffraction and fourier transform infrared spectroscopy. The stability was determined by thermogravimetric analysis, the band gap was determined by solid UV-visible diffuse reflection test, and the fluorescence spectra in methanol solution were measured. It was found that compound 1 showed good photocurrent response.

2024, 44 (3): 30-36. DOI: 10.12422/j.issn.1672-6952.2024.03.005
Effect of Glass Fiber Mass Fraction on Properties of Nylon 6/Glass Fiber Composites
Ruixiang FENG, Mengqi MA, Xuebin LANG, Yuexin HU, Xiangyan HAN, Hongwei XU
Abstract1613)   HTML9)    PDF (2563KB)(371)      

Glass fiber (GF) reinforced nylon 6 (PA6) composites were prepared with a twin-screw extruder. The effects of GF mass fraction on the mechanical properties, thermal properties, density, water absorption and processability of PA6/GF composites were systematically investigated. The results show that the impact strength, tensile strength, flexural strength, flexural modulus, density and thermal deformation temperature of the composites increased with the increase of glass fiber content, while the water absorption and melt flow rate decreased with the increase of glass fiber mass fraction. The morphology showed that the GF was effectively wrapped and dispersed in the PA6 matrix when the GF mass fraction was increased up to 30%.

2024, 44 (3): 23-29. DOI: 10.12422/j.issn.1672-6952.2024.03.004
Effect of Mg 2+ Doping on Li⁃Rich Layered Oxides Materials Li 1.2Mn 0.54Ni 0.13Co 0.13O 2
Ziqi XIE, Yuting TAN, Ni ZHAO, Mingdong ZHOU, Wenchao YAN
Abstract1436)   HTML12)    PDF (3536KB)(315)      

As an electrochemical inert cation, Mg2+ has an ionic radius (0.072 nm) similar to that of Li+ (0.076 nm), which is widely used to replace Li+ in Li?rich layered oxides (LLOs) materials. However, the influence of Mg2+ on the crystal structure of LLOs materials is still controversial. In this work, the Mg?doped Li?rich cathode materials Li1.2-x Mg x Mn0.54Ni0.13Co0.13O2 were synthesized by a sol?gel and high?temperature calcination method. The crystal structure, and valence state of elements in synthesized materials were systematically studied via X?ray diffraction, and X?ray photoelectron spectroscopy. These results indicated that Mg2+ doping can increase the cell parameters of LLOs materials. At the same time, compared with Li1.2Mn0.54Ni0.13Co0.13O2, Mg?doping can effectively improve the electrochemical performance of LLOs materials. After optimization, the Mg?0.03 sample exhibits anomalous electrochemical performance, that is, the initial discharge?specific capacity is 291.9 mA?h/g and the initial coulomb efficiency is 78.40%.

2024, 44 (2): 22-28. DOI: 10.12422/j.issn.1672-6952.2024.02.004
Electrochemical Properties of Co⁃Doped La 1.5Ca 0.5NiO 4+ δ Cathode Materials
Jing JIANG, Yunfeng SONG, Ji MA, Lei ZHANG, Leilei ZHANG, Zhaoyuan SONG
Abstract1367)   HTML14)    PDF (1763KB)(484)      

A new type of Ruddlesden?Popper cobalt?rich layer perovskite oxide La1.5Ca0.5Ni0.2Co0.8O4+δ (LCNC) was synthesized by a sol?gel process. The results show that the conductivity of LCNC in air at 400 ℃ to 800 ℃ is 4~58 S/cm, which is better than that of most reported SOFC cathode materials. The polarization impedance of symmetrical battery LCNC|LSGM|LCNC is 0.16 Ω·cm2 at 800 ℃. The maximum power density of the single cell supported by 300 μm thick La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) with the LCNC cathode was 527 mW/cm2, and the performance of the single cell decreases slightly after working continuously for 50 hours. The experimental results show that LCNC is a potential SOFC cathode material.

2024, 44 (2): 29-35. DOI: 10.12422/j.issn.1672-6952.2024.02.005
Synthesis of Lithium Zinc Titanate Anodes by a Sol⁃Gel Method
Lifu WANG, Huijia LU, Hang XU, Pengwei BAO, Yihang WAN, Rui XUN, Zhongxue ZHANG, Lijuan WANG
Abstract1616)   HTML27)    PDF (2481KB)(686)      

Li2ZnTi3O8 (LZTO) anodes of lithium?ion batteries have been prepared by a sol?gel method. The effects of the calcination temperature and time on the electrochemical performance have been studied for LZTO in detailed. The optimum calcination temperature and time are 700 ℃ and 3 h, respectively. On the basis of the optimum preparation process, citric acid as the chelating agent has been introduced into the synthesis to modify LZTO. When the molar ratio of metal ions to citric acid is 2.00∶1.50, the obtained product is denoted as LZTO?2/1.50, which has small particle size, good dispersion, and then shows good electrochemical performance. The discharge specific capacity is 203.6 mA·h/g after 300 cycles at the current density of 0.5 A /g for LZTO?2/1.50.

2024, 44 (1): 21-28. DOI: 10.12422/j.issn.1672-6952.2024.01.004
Investigation on Ba 2Fe 1.3Mo 0.7O 6- δ Double Perovskite as Anode Material for Solid Oxide Fuel Cell
Xiaogang SU, Zhaoyuan SONG, Leilei ZHANG
Abstract1537)   HTML19)    PDF (1389KB)(376)      

The Fe/Mo ordering at B?sites of Ba2FeMoO6-δ (BFM) were changed by adjusting Fe/Mo amount of substance ratio (i.e., stoichiometric ratio), and then a new double?perovskite anode material Ba2Fe1.3Mo0.7O6-δ (BFM0.7) for SOFC were obtained. The results indicated that the electrical conductivity of the BFM0.7 anode is 15.0~20.0 S/cm at 600~800 ℃ in H2, which is much larger than that of the lowest target for SOFC electrode (0.1 S/cm). The peak power density and polarization resistance of the BFM0.7 anode cell attained 1 149 mW/cm2 and 0.15 Ω·cm2 at 850 ℃. Compared with BFM anode, the performance of BFM0.7 is significantly improved. In addition, the performance of BFM0.7 anode cell showed no degradation after testing for 39 h, indicating that the BFM0.7 anode possesses has excellent electrochemical stability.

2024, 44 (1): 29-34. DOI: 10.12422/j.issn.1672-6952.2024.01.005
Theoretical Study on Raman Spectra of Janus MoSSe Single⁃Layer under Bi⁃Axial Strain
Wei SUN, Hongzhi SUN, Bo ZHAO, Huaihong GUO
Abstract1695)   HTML13)    PDF (3619KB)(963)      

Monolayer Janus transition metal disulfides have low dimension, high mobility, and peculiar electronic structure properties, which have potential applications in electronics and optoelectronic devices. In devices made of monolayer Janus transition metal disulfide and substrate materials,are usually stressed due to lattice mismatch between monolayer Janus transition metal disulfides and substrate, it is significant to study the strain effect on physical properties of monolayer Janus transition metal disulfides through Raman scattering.This paper systematically investigate the biaxial strain effect on the atomic structure, electronic structure and Raman spectra of monolayer Janus MoSSe. The results show that monolayer Janus MoSSe can exhibit a band gap transition from direct to indirect one under biaxial strain, due to both the energy shift of bonding orbitals between the top of the valence band and the bottom of the conduction band and the sensitivity to strain. This paper also thoroughly study the strain effect on the Raman shift and intensity of monolayer Janus MoSSe. It is found that under biaxial strain modulation from decreasing compressive to increasing tensile, for the Raman shift, the three peaks of E1, E2, and A 1 1 red?shift, while the peak of A 1 2 blue?shifts abnormally with decreasing compressive strain; for the intensity, the peak intensity of the doubly?degenerate modes (E1,E2) increases monotonically, while singly?degenerate modes shows the opposite trend, except for the A 1 1 which intensity decreases with decreasing compressive strain and then increases with tensile strain. This paper propose a simple model to comprehend the strain effect. This theoretical study may supply an effective means to quickly and quantitatively characterize the strain size and type in Janus materials through the frequency difference and intensity ratio between typical Raman peaks.

2024, 44 (1): 35-42. DOI: 10.12422/j.issn.1672-6952.2024.01.006
Plasmon Optical Activity Induced by Chiral Molecules in Core⁃Shell Structures
Rong YAN, Zhiguang SUN, Nan GAO, Guodong ZHU, Yurui FANG
Abstract733)   HTML14)    PDF (2562KB)(432)      

The interaction between chiral molecules and plasmons plays a crucial role in regulating the circular dichroism (CD) of chiral modified nanostructures. The direct interaction between chiral molecules and metals can trigger aggregation, thereby affecting their optical properties. In this study, we experimentally synthesized a chiral Core Shell Structure (Au@molecule@SiO2). Due to the presence of a SiO2 shell layer, the particles retain molecular and metal properties while maintaining good stability. Here the UV?Vis absorption spectra and CD spectra of the chiral?modified structure (Au@molecule@SiO2) were measured, and the CD signal induced by the chiral molecules was found at the plasmon resonance position of Au Nanoparticles (Au NPs) (530 nm). To explore the underlying physical mechanism, Mie theory was used to further reveal that the induced CD signal at 530 nm mainly comes from the interaction between electric and magnetic dipoles in the chiral core?shell structure. This work provides experimental references and an effective theoretical framework for the study of chiral core?shell structures.

2023, 43 (5): 20-28. DOI: 10.12422/j.issn.1672-6952.2023.05.004
Synthesis, Crystal Structure and Fluorescence Property of a Copper Coordination Complex with N⁃Donor Ligand
Lei GUAN, Bowen FAN, Ying WANG, Xin WANG
Abstract741)   HTML10)    PDF (1541KB)(476)      

A mononuclear Cu complex Cu0.5(4,4'?bipy)(H2O)·L·0.5(4,4'?bipy)·2H2O (1) was obtained by hydrothermal reaction with Cu2+ as the central ion and 4,4'?bipy as the nitrogen?containing auxiliary ligand. Its structure and composition were characterized by modern characterization methods, such as X?ray single crystal diffraction, elemental analysis and infrared spectrum. The results show that Cu2+ is six coordinated with four nitrogen atoms of 4,4'?bipy molecules and two oxygen atoms of H2O molecules, showing a distorted octahedral coordination configuration. L2- anion only balances the positive charges in compound 1 and does not participate in the coordination of metal Cu2+. Cu2+ coordinates with 4,4'?bipy and H2O molecules to form a lattice layered structure [Cu(4,4'?bipy)2(H2O)2]2+, the hydroxyl group of L2- anion and free H2O molecules form hydrogen bonds with H2O molecules in the layered structure respectively, which increases the thermal stability of H2O molecules in compound 1. The fluorescence emission of compound 1 is at 409 nm, which can be attributed to the intraligand emission state. Compared with the ligand, there is a slight red shift, which may be caused by the coordination between 4,4'? bipy ligand and Cu2+.

2023, 43 (5): 29-33. DOI: 10.12422/j.issn.1672-6952.2023.05.005
Research Progress on the Influence of Metal Nanomaterials on Hydrate Formation
Chang Sun, Weiwei Jian, Sai Ye, Shuai Wang
Abstract590)   HTML17)    PDF (833KB)(401)      

Metal nanomaterials with high thermal conductivity are ideal promoters for enhanced gas hydrate formation, including metal?based nanoparticles, metal oxides, and metalloid oxides. In this paper, the effects of different kinds of metal nanomaterials on the formation of gas hydrates were reviewed, and the effects of parameters such as the induction time and gas consumption of enhanced hydrate formation were introduced from the three aspects of additive concentration, particle size and surface properties. The results show that the heat transfer effect of metal?based nanoparticles is better, and some metal oxides and metalloid oxides will exhibit an inhibitory effect; the appropriate addition concentration and particle size have an important impact on the formation of hydrates. In addition, the combination of metal nanomaterials and chemical reagents can significantly improve the dispersion stability of nanoparticles, thereby promoting the efficient generation of hydrates.

2023, 43 (3): 28-33. DOI: 10.12422/j.issn.1672-6952.2023.03.005
Synthesis and Characterization of Capric Acid⁃Lauric Acid/Expanded Vermiculite as a Phase Change Composite for Energy Efficiency of Buildings
Xianghui Li, Songyang Liu, Ruixue Bai, Jiahui Zhang, Jianan Dai
Abstract922)   HTML9)    PDF (2295KB)(726)      

In this paper, a kind of composite phase change material (capric?lauric acid/expanded vermiculite) using expanded vermiculite as the matrix and capric?lauric acid binary eutectic as the adsorbent was fabricated by vacuum impregnation technology. The chemical compatibility, morphology, stability,thermal?physical properties and reliability of the prepared composite capric?lauric acid/expanded vermiculite were investigated by fourier transform infrared spectrum (FT?IR), scanning electronic microscope (SEM), thermal gravimetric analyzer (TGA), differential scanning calorimeter (DSC) and thermal cycling test. The melting and solidification phase transition temperatures of capric?lauric acid/expanded vermiculite are 18.42 ℃ and 17.51 ℃, respectively. The latent heat of melting and solidification phase transition are 66.9 J/g and 62.9 J/g, respectively. Besides, the encapsulation amount of capric?lauric acid in expanded vermiculite can reach 52.97%, and it has good thermal stability between working temperature. Moreover, the capric?lauric acid/expanded vermiculite was used to substitute for a certain proportion of fine sand to prepare thermal storage mortar, the mechanical and thermal performance of capric?lauric acid/expanded vermiculite?based mortar was evaluated. The test result shows that prepared capric?lauric acid/expanded vermiculite?based thermal storage mortar is a potential material for building heat regulation and energy saving.

2023, 43 (3): 34-40. DOI: 10.12422/j.issn.1672-6952.2023.03.006
Research Progress of Ln⁃MOF as Proton Conducting Material
Honglu Li, Liangliang Huang
Abstract1312)   HTML34)    PDF (1489KB)(1450)      

Proton conductive materials are an important part of sensors and fuel cells. In recent years, the research of crystalline proton conducting materials has mainly focused on metal organic framework material(MOF). Lanthanide metal organic framework (Ln?MOF) is an important member of the MOF family, and it is easy to form a stable and diverse framework owing to the strong coordination ability, Lewis acidity and complex functionality of lanthanide ions. At present, people are beginning to focus on its research in the field of proton conduction. This article reviews the research progress in proton conduction of Ln?MOF materials with different functional acid groups (carboxylate, phosphonate or sulfonate groups, etc.) introduced into the main frame. The challenges faced by Ln?MOF materials in the study of proton conduction were prospected.

2023, 43 (2): 35-41. DOI: 10.12422/j.issn.1672-6952.2023.02.006
Microstructure and High Temperature Mechanical Properties of In⁃Suit Nano⁃Particles Reinforced Al Matrix Composites
Junru Zhang, Baoyin Lu, Jinquan Li, Yuning Zan, Wenguang Wang
Abstract672)   HTML14)    PDF (10323KB)(151)      

In this study, nano?TiO2 was used as the additive phase, and B2O3 and H3BO3 were doped in a certain proportion, and then 4% nano?oxide particles reinforced Al matrix composites were prepared by high?energy ball milling and powder metallurgy. Finally, Al matrix composite rods were prepared with an extrusion ratio of 16∶1 at 723 K. The results show that the dispersion distribution of nano?oxides in Al matrix can be realized after 4 h ball milling. After vacuum hot pressing at 893 K, the addition phase reacts with the Al matrix in?situ and forms Al2O3 etc. When the molar ratio of Ti to B is 1.0∶1.5, the mechanical properties of the composites are the best. At the same time, when the chemical composition of the precursor of B element is different, the mechanical properties of the composites are significantly different; the tensile strength of TiO2+H3BO3/Al at room temperature and 623 K is 507.7 MPa and 151.3 MPa, respectively, showing the highest room temperature mechanical properties; the tensile strength of TiO2+B2O3/Al at room temperature and 623 K is 353.7 MPa and 167.1 MPa, respectively, manifesting the excellent high?temperature mechanical properties.

2023, 43 (2): 26-34. DOI: 10.12422/j.issn.1672-6952.2023.02.005
Progress of Molybdate⁃Based Perovskites as Anode Materials for Solid Oxide Fuel Cells
Yufu Yang, Jiangxin Li, Pengcheng Wang, Yuankui Teng, Fangjun Jin
Abstract1121)   HTML35)    PDF (1523KB)(874)      

Solid oxide fuel cells (SOFC) as one of the energy conversion devices, have received widespread attention and importance from all walks of life because of its clean and efficient operation. Anode is an important part of SOFC. It is important to find anode materials with good fuel catalytic activity in SOFC field. In recent years, molybdat?based perovskite materials as SOFC anodes show excellent conductivity and electrochemical properties at low and medium temperatures, and have been extensively studied by many research groups. In this paper, the research progress of molybdate?base perovskite as SOFC anode is reviewed, and the effects of different doping conditions on the properties of materials are summarized from the theoretical and experimental results, so as to provide guidance for the future research of materials.

2023, 43 (1): 21-26. DOI: 10.12422/j.issn.1672-6952.2023.01.004
Preparation of TiO 2 Mesocrystals by Topochemical Conversion and Their Performance
Shuaikang Chang, Chuang Liu, Kunchen Li, Bo Li, Fangfang Wang, Caiyun Lu, Changdong Chen
Abstract888)   HTML16)    PDF (1781KB)(1537)      

In this work, the rutile mesocrystals TiO2 were synthesized by hydrothermal method using layered titanate HTO (H4x/3Ti2-x/3x/3O4?nH2O) as the precursor. By means of X?ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and other testing methods, the effect of reaction temperature on the synthesis of rutile?type mesoscopic TiO2 crystal material by means of topological structure transformation was studied. The results reveal that rutile TiO2 can be obtained under the condition of pH 0.5 of the reaction system, and with the gradual increase of the reaction temperature, the rutile?type mesoscopic TiO2 crystal material is formed at 120 ℃. Taking Rhodamine B (RhB) as the pollutant model for degradation experiments, the photocatalytic activity of rutile mesocrystals TiO2 is significantly higher than that of other samples. Experiments on dye?sensitized solar cells (DSSCs) show that the mesocrystals structure formed at 120 ℃ is conducive to the rapid migration of photogenerated carriers, thus obtaining high cell characteristics.

2023, 43 (1): 27-31. DOI: 10.12422/j.issn.1672-6952.2023.01.005