| [1] |
BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49⁃e57.
|
| [2] |
HIRSCHMAN L, LIGHT M, BRECK E, et al. Deep read: A reading comprehension system[C]//Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics. College Park: Association for Computational Linguistics, 1999: 325⁃332.
|
| [3] |
RILOFF E,THELEN M.A rule⁃based question answering system for reading comprehension tests[C]//Proceedings of the 2000 ANLP/NAACL Workshop on Reading comprehension tests as evaluation for computer⁃based language understanding sytems⁃Volume 6. Seattle: Association for Computational Linguistics, 2000: 13⁃19.
|
| [4] |
HENAFF M, WESTON J, SZLAM A, et al. Tracking the world state with recurrent entity networks[EB/OL]. (2017⁃05⁃10) [2019⁃12⁃24]. https://ui.adsabs.harvard.edu/abs/2016arXiv161203969H.
|
| [5] |
SEO M, KEMBHAVI A, FARHADI A, et al. Bidirectional attention flow for machine comprehension[EB/OL]. (2018⁃06⁃21) [2019⁃12⁃24]. https://arxiv.org/abs/1611.01603.
|
| [6] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017⁃06⁃12) [2019⁃12⁃24]. https://arxiv.org/abs/1706.03762.
|
| [7] |
DEVLIN J,CHANG M W, LEE K,et al.BERT:Pre⁃training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1 (Long and Short Papers).Minneapolis:Association for Computational Linguistics, 2019: 4171⁃4186.
|
| [8] |
YOU Y, LI J, HSEU J, et al. Reducing BERT pre⁃training time from 3 days to 76 minutes[EB/OL]. [2019⁃12⁃24]. https://arxiv.org/pdf/1904.00962v1.
|
| [9] |
刘欢, 张智雄, 王宇飞. BERT模型的主要优化改进方法研究综述[J]. 数据分析与知识发现, 2021, 5(1): 3⁃15.
|
|
LIU H, ZHANG Z X, WANG Y F. A review on main optimization methods of BERT[J]. Data Analysis and Knowledge Discovery, 2021, 5(1): 3⁃15.
|
| [10] |
郑玉昆, 李丹, 范臻, 等. T⁃Reader:一种基于自注意力机制的多任务深度阅读理解模型[J]. 中文信息学报, 2018, 32(11): 128⁃134.
|
|
ZHENG Y K,LI D,FAN Z,et al.T⁃Reader:A multi⁃task deep reading comprehension model with self⁃attention mechanism[J]. Journal of Chinese Information Processing, 2018, 32(11): 128⁃134.
|
| [11] |
张浩宇, 张鹏飞, 李真真, 等. 基于自注意力机制的阅读理解模型[J]. 中文信息学报, 2018, 32(12): 125⁃131.
|
|
ZHANG H Y, ZHANG P F, LI Z Z, et al. Self⁃attention based machine reading comprehension[J]. Journal of Chinese Information Processing, 2018, 32(12): 125⁃131.
|
| [12] |
SHOBANA J, MURALI M.An improved self attention mechanism based on optimized BERT⁃BiLSTM model for accurate polarity prediction[J]. The Computer Journal, 2023, 66(5): 1279⁃1294.
|
| [13] |
肇晓楠, 谢新连, 赵瑞嘉. 基于滑动窗口动态输入LSTM网络的铁路运输系统碳排放量预测方法[J]. 交通信息与安全, 2023, 41(1): 169⁃178.
|
|
ZHAO X N,XIE X L,ZHAO R J.A method for predicting carbon emission of railway transportation system based on an LSTM network with dynamic input via sliding window[J].Journal of Transport Information and Safety,2023,41(1):169⁃178.
|
| [14] |
江嘉华, 徐鹏程, 邓小毛. 基于滑动窗口⁃变分模态分解的深度学习金融时序预测[J]. 电脑知识与技术, 2022, 18(34): 14⁃18.
|
|
JIANG J H, XU P C, DENG X M. Deep learning financial time series forecasting based on sliding window⁃variational mode decomposition[J]. Computer Knowledge and Technology, 2022, 18(34): 14⁃18.
|
| [15] |
王开放, 姜瑛. 云环境下基于动态滑动窗口多通道Bi⁃LSTM的虚拟机故障预测模型[J]. 计算机应用研究, 2023, 40(3): 855⁃862.
|
|
WANG K F, JIANG Y. Virtual machine fault prediction model based on dynamic sliding window multi⁃channel Bi⁃LSTM in cloud environment[J]. Application Research of Computers, 2023, 40(3): 855⁃862.
|
| [16] |
GOLAB L,TAMER ÖZSU M.Processing sliding window multi⁃joins in continuous queries over data streams[C]//Processing sliding window multi⁃joins in continuous queries over data streams. Berlin: VLDB Endowment, 2003: 500⁃511.
|
| [17] |
KIM Y. Convolutional neural networks for sentence classification[EB/OL]. (2014⁃09⁃03) [2019⁃12⁃24]. https://arxiv.org/abs/1408.5882.
|
| [18] |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER J, et al. Highway networks[EB/OL]. (2015⁃11⁃03) [2019⁃12⁃24]. https://arxiv.org/abs/1505.00387.
|
| [19] |
WESTON J, CHOPRA S, BORDES A. Memory networks[EB/OL]. (2015⁃11⁃29) [2019⁃12⁃24]. https://arxiv.org/abs/1410.3916.
|
| [20] |
HILL F, BORDES A, CHOPRA S, et al. The goldilocks principle: reading children's books with explicit memory representations[EB/OL]. (2016⁃04⁃01) [2019⁃12⁃24]. https://arxiv.org/abs/1511.02301.
|
| [21] |
SHEN Y L, HUANG P S, GAO J F, et al. ReasoNet: Learning to stop reading in machine comprehension[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: Association for Computing Machinery, 2017: 1047⁃1055.
|
| [22] |
赵旭峰, 刘琳琳, 曹宇,等. 基于图像分块和多头注意力机制的气象识别研究[J]. 辽宁石油化工大学学报, 2024, 44(2): 83⁃90.
|
|
ZHAO X F,LIU L L,CAO Y,et al. Research on weather recognition based on image segmentation and multi⁃head attention mechanism[J]. Journal of Liaoning Petrochemical University, 2024, 44(2): 83⁃90.
|
| [23] |
甘玲, 肖阳. 一种融合多头注意力机制和相对位置编码的知识库问答方法: CN202111035912.9[P]. 2021⁃09⁃03.
|
| [24] |
王卫东,胡克富,姜元昊,等.一种基于Transformer编码器和位置编码的推荐方法: CN202211219189.4[P]. 2022⁃09⁃30.
|
| [25] |
WISEMAN S, RUSH A M. Sequence⁃to⁃sequence learning as beam⁃search optimization[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin: Association for Computational Linguistics, 2016: 1296⁃1306.
|
| [26] |
Hu J Q, Liu Y, Wu K S.Neural network pruning based on channel attention mechanism[J].Connection Science,2022,34(1):2201⁃2218.
|
| [27] |
张小川, 戴旭尧, 刘璐, 等. 融合多头自注意力机制的中文短文本分类模型[J]. 计算机应用, 2020, 40(12): 3485⁃3489.
|
|
ZHANG X C, DAI X Y, LIU L, et al. Chinese short text classification model with multi⁃head self⁃attention mechanism[J]. Journal of Computer Applications, 2020, 40(12): 3485⁃3489.
|
| [28] |
WANG S H, JIANG J. Machine comprehension using match⁃LSTM and answer pointer[C]//5th International Conference on Learning Representations, ICLR 2017. Toulon: ICLR, 2017: 1⁃15.
|
| [29] |
CHEN D Q, FISCH A, WESTON J, et al. Reading wikipedia to answer open⁃domain questions[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver: Association for Computational Linguistics, 2017: 1870⁃1879.
|
| [30] |
PARK C, LEE C, HONG L, et al. S2⁃net: Machine reading comprehension with SRU⁃based self⁃matching networks[J]. ETRI Journal, 2019, 41(3): 371⁃382.
|