| [1] |
SIKIRU S, OLADOSU T L, AMOSA T I, et al. Hydrogen⁃powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation[J]. International Journal of Hydrogen Energy, 2024, 56: 1152⁃1182.
|
| [2] |
王玉生, 韩景宽, 宋梅, 等.“双碳”愿景下中国西部能源发展对策探讨[J]. 油气与新能源, 2022, 34(3): 47⁃51.
|
|
WANG Y S, HAN J K, SONG M, et al. Analysis on the development strategy of western China's energy with the "dual⁃carbon" vision[J]. Petroleum and New Energy, 2022, 34(3): 47⁃51.
|
| [3] |
XIE Z A, JIN Q H, SU G L, et al. A review of hydrogen storage and transportation: Progresses and challenges[J]. Energies, 2024, 17(16): 4070.
|
| [4] |
宋雨霖, 李玉星. 氢气在管线钢表面的解离吸附机制及影响因素研究进展[J]. 油气储运, 2024, 43(11): 1212⁃1223.
|
|
SONG Y L, LI Y X. Research review of the mechanism and influencing factors in dissociative adsorption of hydrogen on pipeline steel surface[J]. Oil & Gas Storage and Transportation, 2024, 43(11): 1212⁃1223.
|
| [5] |
刘祎, 董福涛, 齐程伟, 等. 管线钢氢脆的研究进展[J]. 中国冶金, 2024, 34(7): 11⁃20.
|
|
LIU Y, DONG F T, QI C W, et al. Progress of hydrogen embrittlement in pipeline steel[J]. China Metallurgy, 2024, 34(7): 11⁃20.
|
| [6] |
LI X F, YIN J, ZHANG J, et al. Hydrogen embrittlement and failure mechanisms of multi⁃principal element alloys: A review[J]. Journal of Materials Science & Technology, 2022, 122: 20⁃32.
|
| [7] |
DONG L S,WANG S Z,WU G L, et al. Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron⁃based alloys[J]. International Journal of Hydrogen Energy, 2022, 47(46): 20288⁃20309.
|
| [8] |
CONE E F. Carbon and low⁃alloy steels[M]//Pittsburgh District Committee. Symposium on High⁃Strength Constructional Metals.ASTM International, 1936.
|
| [9] |
COCHRANE R C.6⁃Phase transformations in microalloyed high strength low alloy (HSLA) steels[J].Phase Transformations in Steels, 2012, 2: 153⁃212.
|
| [10] |
朱文光, 李娜, 苏航, 等. 微合金高强度管线钢的成分、组织及强韧化机理研究进展[J]. 材料热处理学报, 2025, 46(6): 1⁃14.
|
|
ZHU W G,LI N,SU H,et al. Research progress on composition, microstructure, strengthening and toughening mechanism of microalloyed high strength pipeline steels[J]. Transactions of Materials and Heat Treatment, 2025, 46(6): 1⁃14.
|
| [11] |
孙宏. 高强度管线钢力学性能和冶金特性的最新进展[J]. 焊管, 2017, 40(9): 62⁃68.
|
|
SUN H. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels[J]. Welded Pipe and Tube, 2017, 40(9): 62⁃68.
|
| [12] |
MENG X Y, XIAO S, WU C M, et al. Enhanced hydrogen resistance of X70 pipeline steels by adaptive growth of NiCr composite coatings with Cr/FexNiy inlaid structures[J]. Journal of Alloys and Compounds, 2024, 997: 174932.
|
| [13] |
王宇辰, 吴倩, 刘欢, 等. 管线钢氢相容性测试方法及氢脆防控研究进展[J]. 油气储运, 2023, 42(11): 1251⁃1260.
|
|
WANG Y C, WU Q, LIU H, et al. Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel[J]. Oil & Gas Storage and Transportation, 2023, 42(11): 1251⁃1260.
|
| [14] |
巴凌志, 利成宁, 冯兆龙, 等. 合金元素对X80管线钢熔敷金属组织和性能的影响[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(11): 1187⁃1194.
|
|
BA L Z, LI C N, FENG Z L, et al. Effects of alloying elements on the microstructure and properties of X80 pipeline steel deposited metal[J]. Journal of Tianjin University (Science and Technology), 2023, 56(11): 1187⁃1194.
|
| [15] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high⁃entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299⁃303.
|
| [16] |
YANG Y F, HU F, XIA T, et al. High entropy alloys: A review of preparation techniques, properties and industry applications[J]. Journal of Alloys and Compounds, 2025, 1010: 177691.
|
| [17] |
GANG C, ZHU L H, SHEN S C, et al. FeCrNiMnAl high⁃entropy alloy coating by spray deposition and thermite reaction[J]. Surface Engineering, 2019, 35(9): 809⁃815.
|
| [18] |
赵宝珠, 朱敏, 袁永锋, 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425⁃434.
|
|
ZHAO B Z, ZHU M, YUAN Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(3): 425⁃434.
|
| [19] |
ZHOU X, CURTIN W A. First principles study of the effect of hydrogen in austenitic stainless steels and high entropy alloys[J]. Acta Materialia, 2020, 200: 932⁃942.
|
| [20] |
BOULEDROUA O, HAFSI Z, DJUKIC M B, et al. The synergistic effects of hydrogen embrittlement and transient gas flow conditions on integrity assessment of a precracked steel pipeline[J]. International Journal of Hydrogen Energy, 2020, 45(35): 18010⁃18020.
|
| [21] |
SHEIKHZADEH A,LIU J,ZENG Y M,et al. A combination of first⁃principle and thermodynamics study of high⁃pressured hydrogen uptake on doped Fe(100) surface[J]. International Journal of Hydrogen Energy, 2024, 81: 727⁃738.
|
| [22] |
王诚, 成林, 许泽岷, 等. 含锰钢表面氢原子/氢分子吸附行为的第一性原理研究[J]. 原子与分子物理学报, 2023, 40(5): 1⁃10.
|
|
WANG C, CHENG L, XU Z M, et al. First⁃principles study on the adsorption of hydrogen atoms and molecules on the surface of manganese alloyed steels[J]. Journal of Atomic and Molecular Physics, 2023, 40(5): 1⁃10.
|
| [23] |
程乐, 成林, 许泽岷, 等. Co对Fe(100)表面氢分子吸附行为影响的第一性原理研究[J]. 武汉科技大学学报, 2024, 47(6): 427⁃436.
|
|
CHENG L, CHENG L, XU Z M, et al. First principles study on effect of Co on hydrogen molecule adsorption on Fe(100) surface[J]. Journal of Wuhan University of Science and Technology, 2024, 47(6): 427⁃436.
|
| [24] |
MENG Y,LIU X Y, BAI M M, et al. DFT study on H2 and H adsorption and the electronic properties of single atom Cu modified Fe(111) surface[J]. Applied Surface Science, 2020, 505: 144526.
|
| [25] |
MI Z S, FAN X R, LI T, et al. Impact of alloy elements on the adsorption and dissociation of gaseous hydrogen on surfaces of Ni⁃Cr⁃Mo steel[J]. Processes, 2023, 11(11): 3241.
|
| [26] |
QIU J R, WANG H T, HAN E H. Thermodynamics of hydrogen adsorption on alloy steel surfaces: A DFT study[J]. International Journal of Hydrogen Energy, 2025, 133: 307⁃319.
|
| [27] |
ZHU L X, LUO J H, ZHENG S L, et al. Understanding hydrogen diffusion mechanisms in doped α⁃Fe through DFT calculations[J]. International Journal of Hydrogen Energy, 2023, 48(46): 17703⁃17710.
|
| [28] |
ZHANG L Y,ZHANG Q Z,JIANG P,et al. Effects of alloying element on hydrogen adsorption and diffusion on α⁃Fe(110) surfaces: First principles study[J]. Metals, 2024, 14(5): 487.
|
| [29] |
LI Y J, WEI H Y, ZHENG S L, et al. Hydrogen adsorption and diffusion on the surface of alloyed steel: First⁃principles studies[J]. International Journal of Hydrogen Energy, 2024, 54: 1478⁃1486.
|
| [30] |
XIONG X L, MA H X, ZHANG L N, et al. The hydrogen⁃resistant surface of steels designed by alloy elements doping: First⁃principles calculations[J]. Computational Materials Science, 2023, 216: 111854.
|
| [31] |
LI X J, MA Y, ZHOU W Z, et al. Spin⁃polarized DFT calculations of elemental effects on hydrogen atom adsorption on FeCrAl(110) surface[J]. Applied Surface Science, 2022, 581: 152273.
|
| [32] |
PADAMA A A B, PALMERO M A,SHIMIZU K,et al.Machine learning and density functional theory⁃based analysis of the surface reactivity of high entropy alloys: The case of H atom adsorption on CoCuFeMnNi[J]. Computational Materials Science, 2025, 247: 113480.
|
| [33] |
JOHNSON D F, CARTER E A. First⁃principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement[J]. Acta Materialia, 2010, 58(2): 638⁃648.
|
| [34] |
JIANG D E, CARTER E A. Diffusion of interstitial hydrogen into and through BCC Fe from first principles[J]. Physical Review B, 2004, 70(6): 064102.
|
| [35] |
BISCARINI A, COLUZZI B, MAZZOLAI F M. Interstitial hydrogen in BCC binary alloys: Site occupancies and transition probabilities[J]. Defect and Diffusion Forum, 1998, 165⁃166: 1⁃20.
|
| [36] |
FAN X R, MI Z S, YANG L, et al. Application of DFT simulation to the investigation of hydrogen embrittlement mechanism and design of high strength low alloy steel[J]. Materials, 2022, 16(1): 152.
|
| [37] |
FU Y, LI T, YAN Y B, et al. A first principles study on H⁃atom interaction with bcc metals[J]. International Journal of Hydrogen Energy, 2023, 48(26): 9911⁃9920.
|
| [38] |
SAHLBERG M,KARLSSON D,ZLOTEA C,et al.Superior hydrogen storage in high entropy alloys[J].Scientific Reports, 2016, 6: 36770.
|
| [39] |
SHI J M, LEI Y, HASHIMOTO N, et al. Doping of interstitials (H,He,C,N) in CrCoFeNi high entropy alloy: A DFT study[J]. Materials Transactions, 2020, 61(4): 616⁃621.
|
| [40] |
XIE Z C, WANG Y J, LU C S, et al. Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high⁃entropy alloy[J]. Materials Today Communications, 2021, 26: 101902.
|
| [41] |
CUI M, ZHANG T, NI J, et al. First⁃principles study on the hydrogen embrittlement resistance of CoCrFeMnNi high⁃entropy alloys[J]. International Journal of Hydrogen Energy, 2025, 106: 1275⁃1284.
|
| [42] |
HE Y, LI Y J, CHEN C F, et al. Diffusion coefficient of hydrogen interstitial atom in α⁃Fe,γ⁃Fe and ε⁃Fe crystals by first⁃principle calculations[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27438⁃27445.
|
| [43] |
OMURA T, SAWADA H, KOBAYASHI K, et al. Effects of alloying elements on hydrogen diffusion in iron[J]. ISIJ International, 2021, 61(4): 1287⁃1293.
|
| [44] |
WANG W Y, LI C, SHANG S L, et al. Study on impact of Cr and Mo on diffusion of H in 2.25Cr1Mo steel using first⁃principle calculations[J]. Journal of Nuclear Materials, 2019, 525: 152⁃160.
|
| [45] |
WU M, ZHU H J, WANG J, et al. Hydrogen diffusion in Ni⁃doped iron structure: A first⁃principles study[J]. Chemical Physics Letters, 2023, 831: 140844.
|
| [46] |
XING B H, WU J B, CHENG J L, et al. Hydrogen diffusion in α⁃Fe2O3: Implication for an effective hydrogen diffusion barrier[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32648⁃32653.
|
| [47] |
REN X L, SHI P H, ZHANG W W, et al. Swamps of hydrogen in equiatomic FeCuCrMnMo alloys: First⁃principles calculations[J]. Acta Materialia, 2019, 180: 189⁃198.
|
| [48] |
ZHOU X Y, ZHU J H, WU Y, et al. Machine learning assisted design of FeCoNiCrMn high⁃entropy alloys with ultra⁃low hydrogen diffusion coefficients[J]. Acta Materialia, 2022, 224: 117535.
|
| [49] |
SONG J, CURTIN W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12(2): 145⁃151.
|
| [50] |
付正鸿, 李熙, 李志明. 高强韧抗氢脆高熵合金研究进展[J]. 中国材料进展, 2025, 44(1): 101⁃110.
|
|
FU Z H, LI X, LI Z M. Research progress on strong and tough hydrogen⁃embrittlement resistant high⁃entropy alloys[J]. Materials China, 2025, 44(1): 101⁃110.
|
| [51] |
WANG F Y, WU H H, ZHOU X Y, et al. First⁃principle study on the segregation and strengthening behavior of solute elements at grain boundary in BCC iron[J]. Journal of Materials Science & Technology, 2024, 189: 247⁃261.
|
| [52] |
HE B L, XIAO W, HAO W, et al. First⁃principles investigation into the effect of Cr on the segregation of multi⁃H at the Fe Σ3(111) grain boundary[J]. Journal of Nuclear Materials, 2013, 441(1⁃3): 301⁃305.
|
| [53] |
ITO K, TANAKA Y, TSUTSUI K, et al. Effect of Mo addition on hydrogen segregation at α⁃Fe grain boundaries: A first⁃principles investigation of the mechanism by which Mo addition improves hydrogen embrittlement resistance in high⁃strength steels[J]. Computational Materials Science, 2023, 218: 111951.
|
| [54] |
ZHANG B N, XIONG K, WANG M Q, et al. Grain boundary alloying segregation to resist hydrogen embrittlement in BCC⁃Fe steels: Atomistic insights into solute⁃hydrogen interactions[J]. Scripta Materialia, 2024, 238: 115757.
|
| [55] |
DONG L S, WANG F Y, WU H H, et al. Enhanced hydrogen embrittlement resistance via Cr segregation in nanocrystalline Fe⁃Cr alloys[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925⁃1935.
|
| [56] |
VENEZUELA J, LIM F Y, LIU L, et al. Hydrogen embrittlement of an automotive 1 700 MPa martensitic advanced high⁃strength steel[J]. Corrosion Science, 2020, 171: 108726.
|
| [57] |
VANDEWALLE L, DEPOVER T, VERBEKEN K. Current state⁃of⁃the⁃art of hydrogen trapping by carbides: From theory to experiment[J]. International Journal of Hydrogen Energy, 2025, 136: 888⁃901.
|
| [58] |
MA Y, SHI Y F, WANG H Y, et al. A first⁃principles study on the hydrogen trap characteristics of coherent nano⁃precipitates in α⁃Fe[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27941⁃27949.
|
| [59] |
KRAUSE A M, OLSSON P A T, MUSIC D, et al. Interstitial diffusion of hydrogen in M7C3(M=Cr, Mn, Fe)[J]. Computational Materials Science, 2023, 218: 111940.
|
| [60] |
SAGAR S, SLUITER M H F, DEY P. First⁃principles study of hydrogen⁃carbide interaction in BCC Fe[J]. International Journal of Hydrogen Energy, 2024, 50(Part A): 211⁃223.
|
| [61] |
HAMMER P, ROMANER L, RAZUMOVSKIY V I. Hydrogen trapping in mixed carbonitrides[J]. Acta Materialia, 2024, 268: 119754.
|
| [62] |
MA Y, ZHOU S J, HE Y, et al. Understanding the migration mechanism of hydrogen atom from the α⁃Fe matrix into nano⁃precipitates via DFT calculations[J]. Physical Chemistry Chemical Physics, 2023, 25(43): 29727⁃29737.
|
| [63] |
TAKAHASHI J, KAWAKAMI K, KOBAYASHI Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation⁃hardening steel through atom probe tomography[J]. Scripta Materialia, 2010, 63(3): 261⁃264.
|
| [64] |
TAKAHASHI J, KAWAKAMI K, KOBAYASHI Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel[J]. Acta Materialia, 2018, 153: 193⁃204.
|
| [65] |
WEI F G, HARA T, TSUZAKI K. Nano⁃preciptates design with hydrogen trapping character in high strength steel[C]//Advanced Steels. Berlin: Springer, 2011: 87⁃92.
|
| [66] |
DI STEFANO D, NAZAROV R, HICKEL T, et al. First⁃principles investigation of hydrogen interaction with TiC precipitates in α⁃Fe[J]. Physical Review B, 2016, 93(18): 184108.
|
| [67] |
TAN T L, SUN L, CHENG Y J, et al. First⁃principles study on H traps at the interface between carbides and α⁃Fe with alloy elements[J]. Metals and Materials International, 2025, 31(3): 666⁃675.
|
| [68] |
LI Q, MO J W, MA S H, et al. Defeating hydrogen⁃induced grain⁃boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi⁃type high⁃entropy alloys[J]. Acta Materialia, 2022, 241: 118410.
|
| [69] |
ZHANG S Q, QI L M, LIU S L, et al. Synergistic effects of Nb and Mo on hydrogen⁃induced cracking of pipeline steels: A combined experimental and numerical study[J]. Journal of Materials Science & Technology, 2023, 158: 156⁃170.
|
| [70] |
LIU P Y,ZHANG B N,NIU R M,et al. Engineering metal⁃carbide hydrogen traps in steels[J]. Nature Communications, 2024, 15(1): 724.
|