| [1] |
张智, 许宝进, 梁斌, 等. "双碳"背景下中国氢能发展回顾、面临挑战及建议[J]. 天然气工业, 2025, 45(4): 179⁃192.
|
|
ZHANG Z, XU B J, LIANG B, et al. Review, challenges and suggestions for China's hydrogen energy development in the context of "dual carbon" strategy[J]. Natural Gas Industry, 2025, 45(4): 179⁃192.
|
| [2] |
崔博伦, 赵杰, 吕冉, 等. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327⁃337.
|
|
CUI B L, ZHAO J, LÜ R, et al. Research progress in composite protection technology against hydrogen⁃embrittlement and⁃corrosion for hydrogen⁃blended natural gas pipeline[J]. Journal of Chinese Society for Corrosion and Protection, 2025, 45(2): 327⁃337.
|
| [3] |
ZHANG C Y, SHAO Y B, SHEN W P, et al. Key technologies of pure hydrogen and hydrogen⁃mixed natural gas pipeline transportation[J]. ACS Omega, 2023, 8(22): 19212⁃19222.
|
| [4] |
尚娟, 鲁仰辉, 郑津洋, 等. 掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40(10): 5499⁃5505.
|
|
SHANG J, LU Y H, ZHENG J Y, et al. Research status⁃in⁃situ and key challenges in pipeline transportation of hydrogen⁃natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499⁃5505.
|
| [5] |
刘宇, 张立忠, 高维新. 管线钢的历史沿革及未来展望[J]. 油气储运, 2022, 41(12): 1355⁃1362.
|
|
LIU Y, ZHANG L Z, GAO W X. E Historical development and future prospects of pipeline steel[J]. Oil & Gas Storage and Transportation, 2022, 41(12): 1355⁃1362.
|
| [6] |
程玉峰. 高压氢气管道氢脆问题明晰[J]. 油气储运, 2023, 42(1): 1⁃8.
|
|
CHENG Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high⁃pressure hydrogen environments[J]. Oil & Gas Storage and Transportation, 2023, 42(1): 1⁃8.
|
| [7] |
何润. X80钢断裂过程中的孔洞行为[D]. 武汉: 武汉科技大学, 2006.
|
| [8] |
尹鹏飞,李向阳,陆文萍,等.阴极极化对10Ni9CrMoV高强钢氢脆敏感性的影响[J].钢铁研究学报,2020,32(5):416⁃422.
|
|
YIN P F, LI X Y, LU W P, et al. Effect of cathodic polarization on hydrogen embrittlement susceptibility of 10Ni9CrMoV high strength steel[J]. Journal of Iron and Steel Research, 2020, 32(5): 416⁃422.
|
| [9] |
XING X, YU M S, CHEN W X, et al. Atomistic simulation of hydrogen⁃assisted ductile⁃to⁃brittle transition in α⁃iron[J]. Computational Materials Science, 2017, 127: 211⁃221.
|
| [10] |
XING X, DENG G L, ZHANG H, et al. Molecular dynamics studies of hydrogen effect on intergranular fracture in α⁃iron[J]. Materials, 2020, 13(21): 4949.
|
| [11] |
KOMODA R,KUBOTA M,STAYKOV A,et al. Effect of gas pressure on hydrogen environment embrittlement of carbon steel a106 in carbon monoxide mixed hydrogen gas[J]. Metallurgical and Materials Transactions A, 2022, 53(1): 74⁃85.
|
| [12] |
徐涛龙, 何恭震, 张毅, 等. 氢原子渗透对管线钢微裂纹扩展的影响研究[J]. 西南石油大学学报(自然科学版), 2021, 43(6): 54⁃61.
|
|
XU T L, HE G Z, ZHANG Y, et al. Effect of hydrogen atom permeation on microcrack propagation of pipeline steel[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(6): 54⁃61.
|
| [13] |
WANG X L, ZHAO Y H, CHENG G, et al. Hydrogen adsorption in phase and grain boundaries of pearlitic steels and its effects on tensile strength[J]. MRS Advances, 2022, 7(19): 383⁃387.
|
| [14] |
LUO Z M, HE W, YANG X, et al. Adsorption behavior of hydrogen on the surface of pipeline steel: A molecular dynamics simulation and mechanistic study[J]. Gas Science and Engineering, 2025, 138: 205603.
|
| [15] |
ILIN D N, SAINTIER N, OLIVE J M, et al. Simulation of hydrogen diffusion affected by stress⁃strain heterogeneity in polycrystalline stainless steel[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2418⁃2422.
|
| [16] |
DAS T, CHAKRABARTY R, SONG J, et al. Understanding microstructural influences on hydrogen diffusion characteristics in martensitic steels using finite element analysis (FEA)[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1343⁃1357.
|
| [17] |
XU T L, XIONG F, HAN H Y, et al. Research on hydrogen⁃induced crack propagation behavior in the girth weld zone of X80 hydrogen⁃enriched pipelines based on the phase field method[J]. Engineering Failure Analysis, 2025, 174: 109528.
|
| [18] |
SCHEIDER I, PFUFF M, DIETZEL W. Simulation of hydrogen assisted stress corrosion cracking using the cohesive model[J]. Engineering Fracture Mechanics, 2008, 75(15): 4283⁃4291.
|
| [19] |
白熙贤,徐涛龙,贾彦琨,等.借助CPFEM⁃CZM探究X80掺氢管道氢致裂纹扩展行为[J].管道保护,2025,2(2):25⁃33.
|
|
BAI X X, XU T L, JIA Y K, et al. Investigation of hydrogen⁃induced crack propagation in X80 hydrogen⁃blended pipelines using CPFEM⁃CZM[J]. Pipeline Protection, 2025, 2(2): 25⁃33.
|
| [20] |
李云龙, 陈波, 张克实. 45CrNiMoVA高强度合金钢氢致断裂有限元模拟与试验研究分析[J]. 热加工工艺, 2024, 53(2): 90⁃96.
|
|
LI Y L, CHEN B, ZHANG K S. Analysis finite element simulation and experimental study on hydrogen induced fracture of 45CrNiMoVA high strength alloy steel[J]. Hot Working Technology, 2024, 53(2): 90⁃96.
|
| [21] |
MORICONI C, HÉNAFF G, HALM D. Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals[J]. International Journal of Fatigue, 2014, 68: 56⁃66.
|
| [22] |
GOBBI G, COLOMBO C, VERGANI L. Sensitivity analysis of a 2D cohesive model for hydrogen embrittlement of AISI 4130[J]. Engineering Fracture Mechanics, 2016, 167: 101⁃111.
|
| [23] |
台雪琰. 不规则度对二维随机Voronoi微米及纳米级窝峰模型弹性性能的影响[D]. 合肥: 合肥工业大学, 2012.
|
| [24] |
XU T L, GUO S H, HE G Z, et al. Molecular dynamics study of hydrogen⁃induced cracking behavior of ferrite⁃pearlite gas transmission pipeline steel[J]. Journal of Iron and Steel Research International, 2024, 31(2): 488⁃500.
|
| [25] |
ZHOU X W,FOSTER M E,RONEVICH J A,et al.Review and construction of interatomic potentials for molecular dynamics studies of hydrogen embrittlement in Fe⁃C based steels[J].Journal of Computational Chemistry,2020, 41(13): 1299⁃1309.
|
| [26] |
Advancing Standards Transforming Markets. Standard test method for linear⁃elastic plane⁃strain fracture toughness KIc of metallic materials: ASTM E399-12[S]. Frankfurt: Advancing Standards Transforming Markets, 2012.
|
| [27] |
王炜. 基于内聚力模型的高钢级管线钢裂纹扩展多尺度研究[D]. 成都: 西南石油大学, 2019.
|
| [28] |
GUZIEWSKI M, COLEMAN S P, WEINBERGER C R. Atomistic investigation into the atomic structure and energetics of the ferrite⁃cementite interface: the Bagaryatskii orientation[J]. Acta Materialia, 2016, 119: 184⁃192. (编辑 宋锦玉)
|